The Casimir effect and the physical vacuum Lectures given at the intensive course "Advances in Strong-Field Electrodynamics"

G. Takács

BUTE Department of Theoretical Physics and MTA-BME "Momentum" Statistical Field Theory Research Group

Bolyai College, February 3-6, 2014

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへ⊙

- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- Some related topics

Recommended reading

- Scientific, 2001. World Scientific, 2001.
- J. Phys. A41 No. 16, Special Issue: Proceedings of QFEXT07, 2008.
- M. Bordag, U. Mohideen and V.M. Mostepanenko: New Developments in the Casimir Effect, Phys.Rept. 353: 1-205, 2001. [quant-ph/0106045]
- G.L. Klimchitskaya, U. Mohideen and V.M. Mostepanenko: *The Casimir force between real materials: experiment and theory*, Rev. Mod. Phys. 81:1827-1885, 2009. [arXiv:0902.4022]
- I. Brevik, J.S. Høye: Temperature Dependence of the Casimir Force, Eur. J. Phys. 35: 015012, 2014. [arXiv:1312.5174]

Introduction: QED and the Casimir effect

- QED
- Casimir effect: discovery and simple derivation
- A physical derivation: from momentum flow
- Some other cases: massive scalar, EM field, fermions
- The myth of a mysterious force between ships at sea

<ロ> <四> <四> <四> <三> <四> <三> <四> <三</td>

- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- O Some related topics

Introduction: QED and the Casimir effect QED

- Casimir effect: discovery and simple derivation
- A physical derivation: from momentum flow
- Some other cases: massive scalar, EM field, fermions
- The myth of a mysterious force between ships at sea

<ロ> <四> <四> <四> <三> <四> <三> <四> <三</td>

- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- O Some related topics

Quantum theory of the electromagnetic field

Relativistic quantum electrodynamics (QED)

1948: Feynman, Schwinger, Tomonaga (Nobel prize: 1965)

$$\mathscr{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}\left(i\gamma^{\mu}(\partial_{\mu} + ieA_{\mu}) - m\right)\psi \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

Theory of the photon and the electron/positron field (Origins: Dirac, Pauli, Weisskopf, Jordan; 1927-)

Experimental confirmation of QED

$$lpha = rac{e^2}{4\pi arepsilon_0 \hbar c}$$
 fine structure constant

 $\begin{array}{ll} {\rm e}^- \mbox{ anomalous magnetic moment}: & 1/\alpha = 137.035999710(96) \\ & \mbox{Nuclear recoil:} & 1/\alpha = 137.03599878(91) \\ & \mbox{Hyperfine splitting in muonium:} & 1/\alpha = 137.035994(18) \\ & \mbox{Lamb shift:} & 1/\alpha = 137.0368(7) \\ & \mbox{Quantum Hall effect:} & 1/\alpha = 137.0359979(32) \\ \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへ⊙

QED: "quod erat demonstrandum" – the most precisely validated physical theory!

Introduction: QED and the Casimir effect QED

• Casimir effect: discovery and simple derivation

- A physical derivation: from momentum flow
- Some other cases: massive scalar, EM field, fermions
- The myth of a mysterious force between ships at sea

<u> 《 다 》 《 문 》 《 문 》 《 문 》 《 문 》 《 문 》 </u>

- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- O Some related topics

Attractive force between two perfect conductor plane in vacuum (Casimir, 1948)

$$\frac{F}{A} = -\frac{\hbar c \pi^2}{240 a^4}$$

A macroscopic prediction of QED:

1 μ m distance: 8.169 × 10⁻³ Pa

Naive derivation: from vacuum energy I

Scalar field with Dirichlet BC (units: $\hbar = 1 = c$)

$$\phi(z=0)=\phi(z=a)=0$$

$$\mathscr{E} = \frac{1}{2} \sum \hbar \omega = \frac{1}{2} \sum_{n=1}^{\infty} \int \frac{d^2 k}{(2\pi)^2} \sqrt{k^2 + \left(\frac{n\pi}{a}\right)^2}$$

This is divergent, but we can use dimensional regularization. Using

$$\int_0^\infty \frac{dt}{t} t^{-n} e^{-zt} = \Gamma(-n) z^n \qquad \int d^d k \, e^{-tk^2} = \left(\frac{\pi}{t}\right)^{d/2}$$

we can write

$$\mathscr{E} = \frac{1}{2} \sum_{n} \int \frac{d^{d}k}{(2\pi)^{d}} \int_{0}^{\infty} \frac{dt}{t} t^{-1/2} e^{-t(k^{2}+n^{2}\pi^{2}/a^{2})} \frac{1}{\Gamma(-1/2)}$$
$$= -\frac{1}{4\sqrt{\pi}} \frac{1}{(4\pi)^{d/2}} \sum_{n} \int_{0}^{\infty} \frac{dt}{t} t^{-1/2-d/2} e^{-tn^{2}\pi^{2}/a^{2}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Naive derivation: from vacuum energy II

$$\mathscr{E} = -\frac{1}{4\sqrt{\pi}} \frac{1}{(4\pi)^{d/2}} \sum_{n} \int_{0}^{\infty} \frac{dt}{t} t^{-1/2 - d/2} e^{-tn^{2}\pi^{2}/a^{2}}$$

= $-\frac{1}{4\sqrt{\pi}} \frac{1}{(4\pi)^{d/2}} \left(\frac{\pi}{a}\right)^{1+d} \Gamma\left(-\frac{d+1}{2}\right) \sum_{n} n^{d+1}$ Re $d < -1$
= $-\frac{1}{4\sqrt{\pi}} \frac{1}{(4\pi)^{d/2}} \left(\frac{\pi}{a}\right)^{1+d} \Gamma\left(-\frac{d+1}{2}\right) \zeta(-d-1)$ Re $d < -2$
= $\infty \cdot 0$ for d positive odd integer

Physical: $d \in \mathbb{N} \rightarrow$ analytic continuation is needed!

$$\Gamma\left(\frac{z}{2}\right)\zeta(z)\pi^{-z/2}=\Gamma\left(\frac{1-z}{2}\right)\zeta(1-z)\pi^{-(1-z)/2}$$

$$\mathscr{E} = -\frac{1}{2^{d+2}\pi^{d/2+1}} \frac{1}{a^{d+1}} \Gamma\left(1 + \frac{d}{2}\right) \zeta(2+d) \underset{d=3}{\to} -\frac{\pi^2}{1440} \frac{1}{a^3}$$
Pressure: $\mathscr{F} = -\frac{\partial \mathscr{E}}{\partial a} = -\frac{\pi^2}{480} \frac{1}{a^4}$ EM: 2×

Introduction: QED and the Casimir effect

- QED
- Casimir effect: discovery and simple derivation
- A physical derivation: from momentum flow
- Some other cases: massive scalar, EM field, fermionsThe myth of a mysterious force between ships at sea

<u> 《 다 》 《 문 》 《 문 》 《 문 》 《 문 》 《 문 》 </u>

- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- O Some related topics

A physical derivation: from momentum flow I

Energy-momentum tensor

$$\mathcal{T}_{\mu\nu} = \partial_{\mu}\phi(x)\partial_{\nu}\phi(x) - \eta_{\mu\nu}\mathscr{L}(x)$$

 $\mathscr{L}(x) = rac{1}{2}\partial_{\mu}\phi(x)\partial^{\mu}\phi(x)$

Left plate at z = 0: what we want is

$$\mathscr{F} = \langle T_{zz} \rangle_{z>0} - \langle T_{zz} \rangle_{z<0}$$

How do we compute? From QFT

$$\langle T\phi(x)\phi(x')\rangle = -iG(x,x')$$

Now

$$-\partial^2 G(x, x') = \delta(x - x')$$

$$G(x, x') = \int \frac{d^d k}{(2\pi)^d} e^{i\vec{k} \cdot (\vec{x} - \vec{x}')} \int \frac{d\omega}{2\pi} e^{-i\omega(t - t')} g(z, z' | \vec{k}, \omega)$$

$$- \left(\frac{\partial^2}{\partial z^2} - \lambda^2\right) g(z, z') = \delta(z - z') \qquad \lambda^2 = \omega^2 - k^2$$

$$g(0, z') = g(a, z') = 0$$

A physical derivation: from momentum flow II

Internal contribution

$$g_{\text{int}}(z, z') = -\frac{1}{\lambda \sin \lambda a} \sin \lambda z_{<} \sin \lambda (z_{>} - a)$$

$$\downarrow$$

$$t_{zz}^{\text{int}} = \frac{1}{2i} \partial_{z} \partial_{z'} g_{\text{int}}(z, z')|_{z \to z' = 0} = \frac{i}{2} \lambda \cot \lambda a$$

so

$$\mathscr{F}_{int} = \int \frac{d^d k}{(2\pi)^d} \int \frac{d\omega}{2\pi} \frac{i}{2} \lambda \cot \lambda a$$
$$= -\frac{1}{2} \int \frac{d^d k}{(2\pi)^d} \int \frac{d\zeta}{2\pi} \kappa \coth \kappa a \quad \text{divergent}$$
with $\omega \to i\zeta \quad \lambda \to i\kappa = i\sqrt{k^2 + \zeta^2}$

Outer contribution

$$g_{\text{out}}(z, z') = \frac{1}{\lambda} \sin \lambda z_{<} e^{ikz_{>}}$$
$$t_{zz}^{\text{out}} = \frac{1}{2i} \partial_{z} \partial_{z'} g_{\text{out}}(z, z')|_{z \to z'=0} = \frac{1}{2} \lambda$$

A physical derivation: from momentum flow III

$$\mathscr{F} = -\frac{1}{2} \int \frac{d^d \vec{k}}{(2\pi)^d} \int \frac{d\zeta}{2\pi} \kappa (\coth \kappa a - 1) = -\Omega_{d+1} \int_0^\infty \frac{\kappa^d d\kappa}{(2\pi)^{d+1}} \frac{\kappa}{e^{2\kappa a} - 1}$$

Angular integral

$$\int d^d x \, e^{-\vec{x}^2} = \left(\int d\xi \, e^{-\xi^2} \right)^d = \pi^{d/2}$$
$$= \Omega_d \int x^{d-1} e^{-x^2} dx = \Omega_d \frac{\Gamma(d/2)}{2} \quad \Rightarrow \quad \Omega_d = \frac{2\pi^{d/2}}{\Gamma[d/2]}$$

Use

$$\Gamma(2z) = \frac{2^{2z-1/2}}{\sqrt{2\pi}} \Gamma(z) \Gamma(z+1/2) \qquad \Gamma(s)\zeta(s) = \int_0^\infty dy \frac{y^{s-1}}{e^y - 1}$$

to get

$$\mathscr{F} = -(d+1)2^{-d-2}\pi^{-d/2-1}\frac{\Gamma(1+d/2)\zeta(d+2)}{a^{d+2}} = -\frac{\partial}{\partial a}\mathscr{E}(a)$$

with $\mathscr{E}(a) = -\frac{1}{2^{d+2}\pi^{d/2+1}}\frac{1}{a^{d+1}}\Gamma\left(1+\frac{d}{2}\right)\zeta(2+d)$

Introduction: QED and the Casimir effect

- QED
- Casimir effect: discovery and simple derivation
- A physical derivation: from momentum flow
- Some other cases: massive scalar, EM field, fermions
- The myth of a mysterious force between ships at sea

<u> 《 다 》 《 문 》 《 문 》 《 문 》 《 문 》 《 문 》 </u>

- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- O Some related topics

Massive scalar field

Massive scalar field

$$\mathscr{L}(x) = \frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x) - \frac{1}{2} m^2 \phi^2$$
$$(\partial_{\mu} \partial^{\mu} + m^2) \phi = 0$$

$$-(\partial^2 + m^2)G(x, x') = \delta(x - x')$$

$$G(x, x') = \int \frac{d^d k}{(2\pi)^d} e^{i\vec{k}\cdot(\vec{x}-\vec{x}')} \int \frac{d\omega}{2\pi} e^{-i\omega(t-t')}g(z, z'|\vec{k}, \omega)$$

$$-\left(\frac{\partial^2}{\partial z^2} - \lambda^2\right)g(z, z') = \delta(z - z') \qquad \lambda^2 = \omega^2 - k^2 - m^2$$

$$g(0, z') = g(a, z') = 0$$

$$\mathscr{F} = -\Omega_{d+1} \int_0^\infty \frac{\kappa^d d\kappa}{(2\pi)^{d+1}} \frac{\sqrt{\kappa^2 + m^2}}{e^{2a\sqrt{\kappa^2 + m^2}} - 1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへの

Massive scalar field II; EM field; fermions

$$\mathscr{E} = \frac{1}{a^{d+1}} \frac{1}{2^{d+1} \pi^{(d+1)/2} \Gamma(\frac{d+1}{2})} \int_0^\infty dt \, t^d \log\left(1 - e^{2\sqrt{t^2 + m^2 a^2}}\right)$$
$$= -2\left(\frac{ma}{4\pi}\right)^{d/2+1} \frac{1}{a^{d+1}} \sum_{n=1}^\infty \frac{1}{n^{d/2+1}} K_{d/2+1}(2nma)$$
$$K_n(x) \sim \sqrt{\frac{\pi}{2x}} e^{-x} \left(1 + O(x^{-1})\right)$$

so the effect decays exponentially with ma.

For the EM field between perfectly conducting planes one needs to consider 2 independent polarizations: $2\times$ the result for scalar with Dirichlet BC.

For fermions

$$\mathscr{L}=ar{\psi}\gamma^\mu\partial_\mu\psi$$

proper BC is that no conserved current flows out (bag model):

$$(1+\vec{n}\cdot\vec{\gamma})\psi|_{S}=0$$

Introduction: QED and the Casimir effect

- QED
- Casimir effect: discovery and simple derivation
- A physical derivation: from momentum flow
- Some other cases: massive scalar, EM field, fermions
- The myth of a mysterious force between ships at sea

<u> 《 다 》 《 문 》 《 문 》 《 문 》 《 문 》 《 문 》 </u>

- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- O Some related topics

A popular myth: mysterious force between ships at sea

Popular myth: ships attract at heavy swell due to smaller wave pressure in between.

The two situations were messed up: Caussée claimed attraction in calm sea (below), not in a swell (above)!

Nature, doi:10.1038/news060501-7

P. C. Caussée: The Album of the Mariner (1836)

Introduction: QED and the Casimir effect

2 Realistic cases I: temperature and material dependence

- Temperature effects
- Material effects
- Dependence on the fine structure constant
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

- 5 Time dependent boundaries
- 6 Gravitational aspects
- O Some related topics

1 Introduction: QED and the Casimir effect

Realistic cases I: temperature and material dependence Temperature effects

- Material effects
- Dependence on the fine structure constant
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy

(中) (종) (종) (종) (종) (종)

- 5 Time dependent boundaries
- 6 Gravitational aspects
- 7 Some related topics

Temperature dependence

Matsubara formalism

$$Z = \operatorname{Tr} e^{-\beta H} \qquad \beta = \frac{1}{T}$$

Due to PBC in au, the Euclidean frequencies are quantized

$$\zeta \to \zeta_n = \frac{2\pi n}{\beta} \quad \text{fermions: APBC } \zeta_n = \frac{\pi (2n+1)}{\beta}$$
$$\int \frac{d\zeta}{2\pi} \to \frac{1}{\beta} \sum_n$$
$$\mathscr{F}_T = -\frac{1}{\beta} \int \frac{d^d \vec{k}}{(2\pi)^d} \sum_n \frac{\kappa_n}{e^{2\kappa_n a} - 1} \qquad \kappa_n = \sqrt{k^2 + \left(\frac{2\pi n}{\beta}\right)^2}$$

High-temperature limit is classical

 $T \rightarrow \infty$: only n = 0 term

$$\mathscr{F}_{\mathcal{T}} = -T \int \frac{d^d \vec{k}}{(2\pi)^d} \frac{k}{e^{2ka} - 1} = -T \frac{d}{(2\sqrt{\pi}a)^{d+1}} \Gamma\left(\frac{d+1}{2}\right) \zeta(d+1)$$

Classical free energy

$$F = -T \log Z = T \sum_{\vec{p}} \log(1 - e^{-\beta |\vec{p}|})$$
$$= TV \int \frac{d^d \vec{k}}{(2\pi)^{d+1}} \frac{\pi}{a} \sum_{n=-\infty}^{\infty} \log\left(1 - e^{-\beta \sqrt{\vec{k}^2 + n^2 \pi^2/a^2}}\right)$$

For $T
ightarrow \infty$ expand exponential and use $\log \xi = rac{d}{ds} \xi^s ig|_{s=0}$

$$F \sim TV \frac{1}{2a} \frac{d}{ds} \int \frac{d^{d}\vec{k}}{(2\pi)^{d+1}} \sum_{n=-\infty}^{\infty} \frac{1}{2} \beta^{2s} \left(\frac{n^{2}\pi^{2}}{a^{2}} + k^{2} \right)^{s} \bigg|_{s=0}$$

= $-TV \frac{1}{(2\sqrt{\pi}a)^{d+1}} \Gamma\left(\frac{d+1}{2} \right) \zeta(d+1)$

コト 4回 ト 4回 ト 4回 ト 日 の々の

High-temperature limit is classical

$$F \sim TV \frac{1}{2a} \left. \frac{d}{ds} \int \frac{d^{d}\vec{k}}{(2\pi)^{d+1}} \sum_{n=-\infty}^{\infty} \frac{1}{2} \beta^{2s} \left(\frac{n^{2}\pi^{2}}{a^{2}} + k^{2} \right)^{s} \right|_{s=0}$$

Now do the momentum integral, perform the summation using ζ -function and use

$$\left.\frac{d}{ds} \frac{1}{\Gamma(-s)}\right|_{s=0} = -1$$

So the free energy is

$$F = -TV \frac{1}{(2\sqrt{\pi}a)^{d+1}} \Gamma\left(\frac{d+1}{2}\right) \zeta(d+1)$$

Now the pressure is

$$\mathscr{F} = -\frac{\partial F}{\partial V}$$
 $V = Aa \Rightarrow \frac{\partial}{\partial V} = \frac{1}{A} \frac{\partial}{\partial a}$

and this gives the same result

$$\mathscr{F}_{T} = -T \frac{d}{(2\sqrt{\pi}a)^{d+1}} \Gamma\left(\frac{d+1}{2}\right) \zeta(d+1)$$

This is much more complicated: the result is not analytic in T. The leading correction is

$$\begin{aligned} \mathscr{F} &\approx -(d+1)2^{-d-2}\pi^{-d/2-1}\frac{\Gamma(1+d/2)\zeta(d+2)}{a^{d+2}} \\ &\times \left(1+\frac{1}{d+1}\left(\frac{2a}{\beta}\right)^{d+2}\right) \end{aligned}$$

but there are also corrections of the form

$$\left(\frac{a}{\beta}\right)^{\cdots}e^{-\dots\pi\beta/a}$$

For details cf. Milton's book.

Introduction: QED and the Casimir effect

- Realistic cases I: temperature and material dependence
 Temperature effects
 - Material effects
 - Dependence on the fine structure constant
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy

(中) (종) (종) (종) (종) (종)

- 5 Time dependent boundaries
- 6 Gravitational aspects
- O Some related topics

Material dependence

Lifschitz theory for dielectrics in planar geometry

$$\mathcal{F}^{T=0} = -\frac{1}{16\pi^3} \int_0^\infty d\zeta \int d^2 \vec{k} 2\kappa_3 \left(\frac{1}{d} + \frac{1}{d'}\right)$$

TE: $d = \frac{\kappa_3 + \kappa_1}{\kappa_3 - \kappa_1} \frac{\kappa_3 + \kappa_2}{\kappa_3 - \kappa_2} e^{2\kappa_3 a} - 1$ TM: $d' = d(\kappa \to \kappa/\varepsilon)$
 $\kappa^2 = k^2 + \varepsilon \zeta^2$ ($\zeta = i\omega$)

Finite temperature:

$$\zeta \to \zeta_n = \frac{2\pi n}{\beta}$$
$$\int_0^\infty \frac{d\zeta}{2\pi} \to \frac{1}{\beta} \sum_{n=0}^\infty \gamma \qquad (n = 0 \text{ with half weight})$$

Controversy over thermodynamics

One can rewrite the force ($\varepsilon_1 = \varepsilon_2 = \varepsilon$ and $\varepsilon_3 = 1$)

$$\mathscr{F}^{T} = -\frac{T}{\pi} \sum_{n=0}^{\infty} \int_{\zeta_{n}}^{\infty} q^{2} dq \left[\underbrace{\frac{A_{n}e^{-2qa}}{1 - A_{n}e^{-2qa}}}_{\text{TM mode}} + \underbrace{\frac{B_{n}e^{-2qa}}{1 - B_{n}e^{-2qa}}}_{\text{TE mode}} \right]$$
$$\zeta_{n} = 2\pi n T$$
$$A_{n} = \left(\frac{\varepsilon p - s}{\varepsilon p + s}\right)^{2} \qquad B_{n} = \left(\frac{p - s}{p + s}\right)^{2}$$
$$s^{2} = \varepsilon - 1 + p^{2} \qquad p = \frac{q}{\zeta_{n}}$$

Limit of ideal metal: $\varepsilon(i\zeta_n) \to \infty$. However, in the zero-frequency TE mode, the limits do not commute:

$$\begin{array}{ll} \text{first } \varepsilon \to \infty \text{ then } \zeta \to 0 : & B_0 \to 1 \\ \text{first } \zeta \to 0 \text{ then } \varepsilon \to \infty : & B_0 \to 0 \end{array}$$

Reflectivity of metals

In terms of reflectivity

$$A_n = r_{TM}^{(1)}(i\zeta_n, \vec{k}_\perp) r_{TM}^{(2)}(i\zeta_n, \vec{k}_\perp)$$

$$B_n = r_{TE}^{(1)}(i\zeta_n, \vec{k}_\perp) r_{TE}^{(2)}(i\zeta_n, \vec{k}_\perp)$$

Ideal metals $\mathcal{E} = \infty$

$$r_{TM}(\omega, \vec{k}_{\perp}) = 1$$
 $r_{TE}(\omega, \vec{k}_{\perp}) = -1$

so $A_n = B_n = 1$ for all n. For real metals $\varepsilon < \infty$

$$r_{TM}(0,\vec{k}_{\perp})=1$$
 $r_{TE}(0,\vec{k}_{\perp})=0$

so $B_0 = 0$, and stays so in the limit $\varepsilon \to \infty$. Casimir free energy per unit surface

$$F = \frac{T}{2\pi} \sum_{n=0}^{\infty} \int_{\zeta_n}^{\infty} q dq \left[\underbrace{\log\left(1 - A_n e^{-2qa}\right)}_{\text{TM mode}} + \underbrace{\log\left(1 - B_n e^{-2qa}\right)}_{\text{TE mode}} \right]$$
$$\mathscr{F}^T = -\frac{\partial F}{\partial a}$$

DQC

Ideal metal

Ideal metal: $A_n = B_n = 1$ for all n. Then

$$\mathscr{F}^{T} = -\frac{\pi^{2}}{240a^{4}} \left[1 + \frac{1}{3} (2aT)^{4} \right] \qquad aT \ll 1$$

Casimir free energy per unit surface

$$F = -\frac{\pi^2}{720a^3} \begin{bmatrix} 1 + \underbrace{\frac{45\zeta(3)}{\pi^3}(2aT)^3}_{\text{requires special care}} & -(2aT)^4 \end{bmatrix} \qquad \zeta(3) \approx 1.2$$

Entropy

$$S = -\frac{\partial F}{\partial T} = \frac{3\zeta(3)}{2\pi}T^2 - \frac{4\pi^2 a}{45}T^3 \quad aT \ll 1$$

This is fine: $S(T \to 0) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シ۹ペ

Modified ideal and Drude metals

Drude model

$$arepsilon(i\zeta) = 1 + rac{\omega_{
m plasma}^2}{\zeta(\zeta+v)}$$

very good model for many metals in optical experiments for $\zeta < 2 \cdot 10^{15} Hz$ (e.g. gold: $\omega_p = 9.03 \ eV$, $v = 0.0345 \ eV$). Whenever $\lim_{\zeta \to 0} \zeta^2 (\varepsilon(i\zeta) - 1) = 0$

the zero-frequency TE mode does not contribute, i.e. $B_0 = 0$:

$$\mathscr{F}^{T} = -\frac{\pi^{2}}{240a^{4}} \left[1 + \frac{1}{3} (2aT)^{4} \right] + \frac{T}{8\pi a^{3}} \zeta(3) \qquad aT \ll 1$$
$$F = -\frac{\pi^{2}}{720a^{3}} \left[1 + \frac{45\zeta(3)}{\pi^{3}} (2aT)^{3} - (2aT)^{4} \right] + \frac{T}{16\pi a^{2}} \zeta(3)$$
$$S = \frac{3\zeta(3)}{2\pi} T^{2} - \frac{4\pi^{2}a}{45} T^{3} - \frac{\zeta(3)}{16\pi a^{2}} \qquad \text{!!! violates Nernst theorem}$$

Mostepanenko, Geyer: abandon Drude model. Low frequency \Rightarrow wave-length long, field constant inside plate \Rightarrow cannot exist, leads to charge separation

However: why to give up a successful description of materials, when there are other ways to avoid the problem. E.g. if resistivity does not simply go to 0 at T = 0, i.e.

$$v(T \rightarrow 0) \neq 0$$

Additional physical effects:

1. Spatial dispersion

 $\varepsilon(\omega, \vec{k})$

Only $\varepsilon(0,0)$ would be infinite, but that is zero measure in \vec{k} space.

2. Anomalous skin effect: mean free path of electrons becomes longer than field penetration depth near T = 0. Again, no contribution from TE zero mode found.

3. Large separation: result for Casimir effect same as for large T, i.e. classical. It turns out TE modes do not contribute in this limit and

$$\mathscr{F}=-rac{\zeta(3)\,T}{8\pi a^3}\qquad a
ightarrow\infty$$

and this precisely agrees with the Drude prediction.

Future experiments will decide which scenario is valid (possibly dependent on material).

Present experimental situation seems inconclusive to me.

Repulsive Casimir forces

One way: measure inside fluid, suitably chosen dielectric constant \Rightarrow Lifshitz theory predicts repulsion. J.N. Munday, F. Capasso, and V.A. Parsegian:

Nature 457: 170–173, 2009.

Gold sphere - gold plate, in bromobenzene: 150 pN at 20 nm separation

Other way: coat surfaces of appropriate (meta)materials e.g. $\varepsilon_{left} = \infty$ and $\mu_{right} = \infty$ or negative refraction (cloaking) (KK: only in limited freq. range!)

Analysis: K.A Milton et al, J. Phys. **A45** 374006, 2012. [arXiv:1202.6415]

< □ > < @ > < 注 > < 注 > ... 注

What do you get if you lay an an invisibility cloak on the floor?

A flying carpet!

(日) (四) (로) (로)
Introduction: QED and the Casimir effect

2 Realistic cases I: temperature and material dependence

- Temperature effects
- Material effects
- Dependence on the fine structure constant
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy

(中) (종) (종) (종) (종) (종)

- 5 Time dependent boundaries
- 6 Gravitational aspects
- O Some related topics

Where has α gone?

QED effect: would expect appearance of fine structure constant, but it is nowhere to be found...

Actual metals: frequency-dependent dielectric constant and conductivity. Drude model:

$$\sigma(\omega) = 0$$
 $\omega^2 > \omega_{plasma}^2 = rac{4\pi e^2 n}{m}$

For $\omega < \omega_{\textit{plasma}}$: penetration length (skin depth)

$$\delta^{-2} = \frac{2\pi\omega|\sigma|}{c^2}$$
 $\sigma = \frac{ne^2}{m(\gamma_0 - i\omega)}$

Typically $\omega \gg \gamma_0$ (damping)

$$\delta pprox rac{c}{\sqrt{2}\omega_{plasma}}$$

Frequencies dominating Casimir effect: $c/d \Rightarrow$ perfect conductor approximation means

$$\frac{c}{d} \ll \omega_{plasma}$$
 $\alpha \gg \frac{mc}{4\pi\hbar nd^2}$

Where has lpha gone? II

Typically: $d < 0.5 \mu m$. Copper:

$$rac{mc}{4\pi\hbar nd^2}pprox 10^{-5}\lllphapprox rac{1}{137}$$

Casimir force is $\alpha \to \infty$ limit!!! $\alpha \to 0$ limit:

$$a_{Bohr} = rac{\hbar^2}{me^2} \propto rac{1}{lpha}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへ⊙

and so $n \propto \alpha^3 \Rightarrow \omega_{plasma} \propto \alpha^2$: for any fixed separation *d*, Casimir effect goes away.

Also $\delta \rightarrow \infty$: separation *d* becomes ill-defined.

For more details cf. R.L. Jaffe: The Casimir effect and Quantum Vacuum, hep-th/0503158.

Radiative corrections: Schwinger's method

Schwinger's approach: consider the vacuum persistence amplitude in the presence of sources and boundaries

$$e^{iW[K]} = \langle 0|e^{-iHT}|0\rangle = \int D\Phi e^{i(S[\Phi] + \int K\Phi)}$$
$$W[K] = \frac{1}{2} \int dx dx' K(x) G(x, x') K(x')$$

Effective field

$$\phi(x) = \int dx' G(x, x') \mathcal{K}(x')$$
$$\mathcal{K}(x) = \int dx' G^{-1}(x, x') \phi(x')$$

Altering the geometry (e.g. moving boundaries adiabatically)

$$\delta W[K] = \frac{1}{2} \int dx dx' K(x) \delta G(x, x') K(x')$$
$$= -\frac{1}{2} \int dx dx' \phi(x) \delta G^{-1}(x, x') \phi(x')$$

Casimir energy from response of Green's function

Now

$$e^{iW[K]} = e^{\frac{1}{2}i\int dx \mathcal{K}(x)\phi(x)} = \cdots - \frac{1}{2}\int dx dx'\phi(x)\mathcal{K}(x)\mathcal{K}(x')\phi(x')$$

i.e. changing boundaries is equivalent to a new two-particle source

$$\left[iK(x)K(x')\right]_{eff} = -\delta G^{-1}(x,x')$$

$$\delta W = \frac{i}{2} \int dx dx' G(x, x') \delta G^{-1}(x, x') = -\frac{i}{2} \int dx dx' \delta G(x, x') G^{-1}(x, x')$$
$$= -\frac{i}{2} \int dx dx' \delta \log G(x, x') = -\frac{i}{2} \delta \operatorname{Tr} \log G$$

SO

$$E = \lim_{T \to \infty} \frac{i}{2T} \left(\operatorname{Tr} \log G - \operatorname{Tr} \log G_{ref} \right)$$

where G_{ref} is the value at some reference state (e.g. with bodies infinite distance apart).

Radiative correction for electromagnetic field

Use perturbative form of G with Π as polarization

$$G = G_0(1 + \Pi G_0 + \dots)$$

Result for parallel plates

$$\mathscr{E} = \frac{E}{A} = -\frac{\pi^2}{720a^3} + \frac{\alpha\pi^2}{2560m_ea^4} + O(\alpha^2)$$

This is suppressed by

$$\frac{\alpha m_e^{-1}}{a}$$

and is inobservable in practice

$$m_e^{-1} = \lambda_{Compton} \approx 2.43 \cdot 10^{-12} m$$
 $lpha pprox rac{1}{137}$

(日) (四) (문) (문) (문) (문)

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
 - Proximity force approximation
 - The method of Green's dyadic
 - Lateral Casimir force
 - Casimir force between compact bodies
- 4 Comments on Casimir force and zero-point energy

1

- 5 Time dependent boundaries
- 6 Gravitational aspects
- 7 Some related topics

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
 - Proximity force approximation
 - The method of Green's dyadic
 - Lateral Casimir force
 - Casimir force between compact bodies
- 4 Comments on Casimir force and zero-point energy

12

- 5 Time dependent boundaries
- 6 Gravitational aspects
- One related topics

Novel measurement methods

Figure : Bell Labs

Torsion balance (Capasso, Harvard) Figure : Mohideen et al.

AFM (Atomic Force Microscope), sensibility in principle can be 10^{-17} N (reached: 10^{-13} N) Si-plate: dielectric constant can be modulated by laser (U. Mohideen et al., UC Riverside)

Proximity force approximation; special geometries

Simplest way to account for geomery dependence:

Proximity Force Theorem

Sphere and plate, $R \gg d$: every element of sphere is approximately parallel to plate

$$V(d) = \int_0^{\pi} 2\pi R \sin \theta R d\theta \, \mathscr{E}(d + R(1 - \cos \theta)) = 2\pi R \int_{-R}^{R} dx \, \mathscr{E}(d + R - x)$$
$$F = -\frac{\partial V}{\partial d} = 2\pi R \int_{-R}^{R} dx \frac{d\mathscr{E}(d + R - x)}{dx}$$
$$= 2\pi R (\mathscr{E}(d) - \mathscr{E}(d + 2R)) \approx 2\pi R \mathscr{E}(d)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Lamoreaux: $5\% \rightarrow$ Mohideen & Roy: $1\% \rightarrow$ Bell Labs 0.5% Need to include: finite conductivity corrections, surface roughness.

Other calculations: sphere - plate, cylinder - plate, concentric spheres, coaxial cylinders. (K.A.Milton: The Casimir effect, World Scientific, 2001.)

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 8 Realistic cases II: geometry dependence
 - Proximity force approximation
 - The method of Green's dyadic
 - Lateral Casimir force
 - Casimir force between compact bodies
- 4 Comments on Casimir force and zero-point energy

12

- 5 Time dependent boundaries
- 6 Gravitational aspects
- 7 Some related topics

Green's dyadic

Green's dyadic: response of EM field to polarization

$$E_i(x) = \int d^4 x' \Gamma_{ij}(x, x') P_j(x')$$
$$H_i(x) = \int d^4 x' \Phi_{ij}(x, x') P_j(x')$$

Static situation: frequency decomposition

$$\Gamma_{ij}(x,x') = \int \frac{d\omega}{2\pi} e^{-i\omega(t-t')} \Gamma_{ij}(\vec{x},\vec{x}';\omega)$$
$$\Phi_{ij}(x,x') = \int \frac{d\omega}{2\pi} e^{-i\omega(t-t')} \Phi_{ij}(\vec{x},\vec{x}';\omega)$$

Maxwell's equations ($\varepsilon_0 = \mu_0 = 1$)

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{H}}{\partial t} \quad \Rightarrow \quad \varepsilon_{ijk} \partial_j \Gamma_{kl} = i \omega \Phi_{il}$$
$$\operatorname{rot} \vec{H} = \frac{\partial \left(\vec{E} + \vec{P}\right)}{\partial t} \quad \Rightarrow \quad -\varepsilon_{ijk} \partial_j \Phi_{kl} - i \omega \Gamma_{il} = i \omega \delta_{il} \delta(\vec{x} - \vec{x}')$$
$$\operatorname{div} \vec{H} = 0 \quad \Rightarrow \quad \partial_i \Phi_{ij} = 0$$

Redefining T:

$$\Gamma'_{il} = \Gamma_{il} + \delta_{il}\delta(\vec{x} - \vec{x}') \quad \Rightarrow \quad \partial_i\Gamma'_{ij} = 0$$

Taking the rotation of Maxwell's equations, we get

$$(\nabla^2 + \omega^2) \Gamma'_{ij} = -(\partial_i \partial_j - \delta_{ij} \nabla^2) \delta(\vec{x} - \vec{x}') (\nabla^2 + \omega^2) \Phi_{ij} = i \omega \varepsilon_{ikj} \partial_k \delta(\vec{x} - \vec{x}')$$

This has to be solved with boundary conditions:

e.g. for a conducting boundary, tangential electric field vanishes on the surface

$$\varepsilon_{ijk} n_j \Gamma'_{kl}(\vec{x}, \vec{x}'; \omega) \big|_{\vec{x} \in \Sigma} = 0$$

Main advantage of method: explicit gauge invariance.

Computing the Casimir stress

The two-point functions of fields are

$$\langle E_i(x)E_j(x')\rangle = -i\Gamma_{ij}(x,x') \langle H_i(x)H_j(x')\rangle = i\frac{1}{\omega^2}\varepsilon_{ikl}\partial_k\varepsilon_{jmn}\partial_k\Gamma_{mn}(x,x') (from \varepsilon_{ikl}\partial_kE_l(x) = i\omega H_i(x))$$

and the Maxwell stress tensor is

$$T_{ij} = E_i E_j - \frac{1}{2} \delta_{ij} \vec{E}^2 + H_i H_j - \frac{1}{2} \delta_{ij} \vec{H}^2$$

 \Rightarrow Casimir stress on the surface. E.g. for a perfectly conducting sphere of radius *a*

$$\mathscr{F} = \langle T_{rr}(r = a - 0) \rangle - \langle T_{rr}(r = a + 0) \rangle = \frac{1}{4\pi a^2} \left(-\frac{\partial E}{\partial a} \right)$$

and the self-energy from Casimir stress is (Boyer)

$$E = \frac{0.092353}{2a} \qquad (\hbar = 1 = c)$$

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
 - Proximity force approximation
 - The method of Green's dyadic
 - Lateral Casimir force
 - Casimir force between compact bodies
- 4 Comments on Casimir force and zero-point energy

12

- 5 Time dependent boundaries
- 6 Gravitational aspects
- One related topics

Lateral force

PFA: averaging over surface roughness. Condition: $\lambda_c \gg z_A$, zero lateral force.

F. Chen and U. Mohideen, Phys. Rev A66: 032113, 2002.

Use of Casimir force in micromachines

Standard worry: Casimir force would make nanobots stick.

Idea: exploit Casimir force to produce motion.

T. Emig: Casimir force driven ratchets Phys. Rev. Lett. **98**:160801, 2007 [cond-mat/0701641]

A Casimir ratchet producing lateral motion by vibrating separation

With typical parameters $\langle v \rangle \sim {\sf mm/s}$

Other similar effect: Casimir torque (for asymmetric bodies) Not yet observed!

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
 - Proximity force approximation
 - The method of Green's dyadic
 - Lateral Casimir force
 - Casimir force between compact bodies
- 4 Comments on Casimir force and zero-point energy

3

・ロン ・四マ ・ヨマ ・ロン

- 5 Time dependent boundaries
- 6 Gravitational aspects
- 7 Some related topics

Arbitrary compact bodies

Emig, Graham, Jaffe & Kardar '2007

$$Z[\mathscr{C}] = \operatorname{Tr} e^{-\frac{i}{\hbar}H_{\mathscr{C}}T} = \int [\mathscr{D}\Phi]_{\mathscr{C}} e^{\frac{i}{\hbar}S[\Phi]}$$
$$\Phi(\vec{x}, t+T) = \Phi(\vec{x}, t)$$
and $\Phi|_{\mathscr{C}} = 0$

(日) (四) (三) (三) (三)

$$\operatorname{Tr} \, \mathrm{e}^{-\frac{1}{\hbar}H_{\mathscr{C}}\Lambda} \mathop{\to}_{\Lambda \to \infty} \mathrm{e}^{-\frac{1}{\hbar}\mathscr{E}_0[\mathscr{C}]\Lambda} + \dots \qquad \qquad \mathscr{C} = \bigcup_{\alpha} \Sigma_{\alpha}$$

$$\Rightarrow \mathscr{E}[\mathscr{C}] = \lim_{T \to -i\infty} \frac{\hbar}{|T|} \ln \frac{Z[\mathscr{C}]}{Z_{\infty}} = \sum_{n} \frac{\hbar}{2} (\omega_n - \omega_{n,\infty})$$

Suppose $\mathscr C$ is time-independent: we can Fourier expand in time

$$\int [\mathscr{D}\Phi]_{\mathscr{C}} \to \int \prod_{n} [\mathscr{D}\phi_{n}(\vec{x})]_{\mathscr{C}}$$
$$\Phi(x) = \sum_{n} \phi_{n}(\vec{x})e^{2\pi i n t/T}$$

Fluctuating surface charges

So we get

$$\log Z[\mathscr{C}] = \sum_{n} \log \left\{ \int [\mathscr{D}\phi_{n}(\vec{x})]_{\mathscr{C}} e^{i\frac{T}{\hbar} \int d\vec{x} \left(\left(\frac{2\pi n}{cT}\right)^{2} |\phi_{n}(\vec{x})|^{2} - |\nabla\phi_{n}(\vec{x})|^{2} \right)} \right\}$$
$$(T \to \infty) = \frac{cT}{\pi} \int_{0}^{\infty} dk \log \mathscr{L}_{\mathscr{C}}(k)$$
$$\mathscr{L}_{\mathscr{C}}(k) = \int [\mathscr{D}\phi(\vec{x},k)]_{\mathscr{C}} e^{\frac{i}{\hbar}T \int d^{3}\vec{x} \left(k^{2} |\phi(\vec{x},k)|^{2} - |\nabla\phi(\vec{x},k)|^{2} \right)}$$

Now putting $T = -i\Lambda/c$, Wick rotating $k = i\kappa$

$$\mathscr{E}[\mathscr{C}] = -\frac{\hbar c}{\pi} \int_0^\infty d\kappa \log \frac{\mathscr{L}_{\mathscr{C}}(i\kappa)}{\mathscr{L}_{\infty}(i\kappa)}$$
$$\mathscr{L}_{\mathscr{C}}(i\kappa) = \int [\mathscr{D}\phi(\vec{x},i\kappa)]_{\mathscr{C}} e^{-\frac{T}{\hbar} \int d^3\vec{x} \left(\kappa^2 |\phi(\vec{x},i\kappa)|^2 + |\nabla\phi(\vec{x},i\kappa)|^2\right)}$$

Implement Dirichlet BC with Lagrange multipliers:

$$\int [\mathscr{D}\phi(\vec{x})]_{\mathscr{C}} = \int [\mathscr{D}\phi(\vec{x})] \underbrace{\prod_{\alpha} \int [\mathscr{D}\rho_{\alpha}(\vec{x})\mathscr{D}\rho_{\alpha}^{*}(\vec{x})] e^{i\frac{T}{\hbar}\int_{\Sigma_{\alpha}} d^{3}\vec{x}(\rho_{\alpha}(\vec{x})^{*}\phi(\vec{x})+c.c.)}}_{\sim}$$

functional Dirac delta

Performing the Φ integral

So

$$\begin{split} \mathscr{Z}_{\mathscr{C}}(k) &= \int \left[\mathscr{D}\phi(\vec{x},k) \right]_{\mathscr{C}} \prod_{\alpha} \int \left[\mathscr{D}\rho_{\alpha}(\vec{x}) \mathscr{D}\rho_{\alpha}^{*}(\vec{x}) \right] \mathrm{e}^{\frac{i}{\hbar}T\tilde{S}(\phi,\rho)} \\ \tilde{S}(\phi,\rho) &= \int d^{3}\vec{x} \left(k^{2} |\phi(\vec{x},k)|^{2} - |\nabla\phi(\vec{x},k)|^{2} \right) \\ &+ \int_{\Sigma_{\alpha}} d^{3}\vec{x} \left(\rho_{\alpha}(\vec{x})^{*}\phi(\vec{x},k) + c.c. \right) \end{split}$$

Idea: integrate out Φ from quadratic functional integral \rightarrow classical solution + fluctuations.

$$(\nabla^2 + k^2)\phi_{cl}(\vec{x}, k) = 0 \times \notin \Sigma_{\alpha}$$
$$\Delta\phi_{cl}(\vec{x}, k) = 0 \times \in \Sigma_{\alpha}$$
$$\Delta\partial_n\phi_{cl}(\vec{x}, k) = \rho_{\alpha}(x) \times \in \Sigma_{\alpha}$$

(日) (四) (코) (코) (코) (코)

Integrating out fluctuations

$$\begin{split} \phi_{cl}(\vec{x}) &= \sum_{\beta} \int_{\Sigma_{\beta}} d\vec{x}' \mathscr{G}_{0}(\vec{x}, \vec{x}', k) \rho_{\beta}(\vec{x}') \\ \mathscr{G}_{0}(\vec{x}, \vec{x}', k) &= \frac{e^{ik|\vec{x} - \vec{x}'|}}{4\pi |\vec{x} - \vec{x}'|} = ik \sum_{lm} j_{l}(kr_{<}) h_{l}^{(1)}(kr_{>}) Y_{lm}(\hat{x}') Y_{lm}(\hat{x})^{*} \end{split}$$

Put now $\phi = \phi_{cl} + \delta \phi$

$$\mathscr{Z}_{\mathscr{C}}(k) = \prod_{\alpha} \int [\mathscr{D}\rho_{\alpha}(\vec{x})\mathscr{D}\rho_{\alpha}^{*}(\vec{x})] e^{\frac{i}{\hbar}T\tilde{S}_{cl}(\rho)} \times \underbrace{\int [\mathscr{D}\delta\phi(\vec{x},k)] e^{\frac{i}{\hbar}\int d^{3}\vec{x}\left(k^{2}|\delta\phi(\vec{x},k)|^{2}-|\nabla\delta\phi(\vec{x},k)|^{2}\right)}}_{\mathbf{v}}$$

unconstrained fluctuations: cancel out with denominator $\tilde{S}_{cl}(
ho) = \int_{\Sigma_{lpha}} d^3 \vec{x} \left(
ho_{lpha}(\vec{x})^* \phi(\vec{x},k) + c.c. \right)$

Also note that $\phi_{cl} = \sum_{\beta} \phi_{\beta}$, where ϕ_{β} is sourced by ρ_{β} .

$$\phi_{cl}(\vec{x}) = \sum_{\beta} \int_{\Sigma_{\beta}} d\vec{x}' \left[ik \sum_{lm} j_l(kr_{<}) h_l^{(1)}(kr_{>}) Y_{lm}(\hat{x}') Y_{lm}(\hat{x})^* \right] \rho_{\beta}(\vec{x}')$$

Interaction terms (lpha
eq eta): in terms of multipoles

$$Q_{\beta,lm} = \int_{\Sigma_{\beta}} d\vec{x}_{\beta} j_{l}(kr_{\beta}) Y_{lm}^{*}(\hat{x}_{\beta}) \rho_{\beta}(\vec{x}_{\beta})$$

$$\phi_{\beta}(\vec{x}_{\beta}) = ik \sum_{lm} Q_{\beta,lm} h_{l}^{(1)}(kr_{\beta}) Y_{lm}(\hat{x}_{\beta})$$

$$\phi_{\beta}(\vec{x}_{\alpha}) = ik \sum_{lm} Q_{\beta,lm} \sum_{l'm'} \mathscr{U}_{lm,l'm'}^{\alpha\beta} h_{l'}^{(1)}(kr_{\alpha}) Y_{l'm'}(\hat{x}_{\alpha})$$

 $\mathscr{U}^{\alpha\beta}_{lm,l',m'}$: translation coefficients, depending on Σ_{α} and Σ_{β}

$$\begin{split} \tilde{S}_{\alpha\beta}(\rho) &= \int_{\Sigma_{\alpha}} d^{3}\vec{x} \left(\rho_{\alpha}(\vec{x})^{*}\phi_{\beta}(\vec{x},k) + c.c.\right) \\ &= \frac{1}{2}ik\sum_{lm}\sum_{l'm'} \left(Q_{\alpha,l'm'}^{*}\mathscr{U}_{l'm',lm}^{\alpha\beta}Q_{\beta,lm} + c.c\right) \end{split}$$

Self-interaction terms

$$ilde{S}_{lpha lpha}(
ho) = rac{1}{2} \int_{\Sigma_{lpha}} d^3 ec{x} \left(
ho_{lpha}(ec{x})^* \phi_{lpha}(ec{x},k) + c.c.
ight)$$

Field inside Σ_{α} is regular Helmholtz solution, outside general

$$\phi_{in,\alpha}(\vec{x}) = \sum_{lm} \phi_{\alpha,lm} j_l(kr) Y_{lm}(\hat{x}) \qquad \phi_{out,\alpha}(\vec{x}) = \phi_{in,\alpha}(\vec{x}) + \Delta \phi_{\alpha}(\vec{x})$$

$$\Delta\phi_{\alpha}(\vec{x}) = \sum_{lm} \chi_{\alpha,lm} \left(j_{l}(kr) Y_{lm}(\hat{x}) + \sum_{l'm'} \mathscr{T}^{\alpha}_{l'm'lm}(k) h^{(1)}_{l'}(kr) Y_{l'm'}(kr) \right)$$

where $\mathscr{T}^{\alpha}_{l'm'lm}(k)$ is from $\Delta \phi_{\alpha}(\vec{x})|_{\Sigma_{\alpha}} = 0$. But the out field is regular at infinity $\Rightarrow \chi_{\alpha,lm} = -\phi_{\alpha,lm}$. So

$$\begin{split} \phi_{out,\alpha}(\vec{x}) &= -\sum_{lm} \phi_{\alpha,lm} \sum_{l'm'} \mathscr{T}^{\alpha}_{l'm'lm}(k) h^{(1)}_{l'}(kr) Y_{l'm'}(kr) \\ \text{but it is also} &= \int_{\Sigma_{\alpha}} d\vec{x}' \mathscr{G}_{0}(\vec{x},\vec{x}') \rho_{\alpha}(\vec{x}') = ik \sum_{l'm'} Q_{\alpha,l'm'} h^{(1)}_{l'}(kr) Y_{l'm'}(\hat{x}) \\ \text{so that } ik Q_{\alpha,l'm'} &= \sum_{lm} \phi_{\alpha,lm} \mathscr{T}^{\alpha}_{l'm'lm}(k) \\ \phi_{\alpha,lm} &= -ik \sum_{l'm'} \left[\mathscr{T}^{\alpha}(k) \right]^{-1}_{l'm'lm} Q_{\alpha,l'm'} \\ &= \sum_{lm} \phi_{\alpha,lm} \left[\mathscr{T}^{\alpha}(k) \right]^{-1}_{l'm'lm} Q_{\alpha,l'm'} \end{split}$$

Integrating over charge fluctuations

The final form for the self-interaction is

$$\tilde{S}_{\alpha\alpha}(\rho) = -\frac{ik}{2} \sum_{l'm'} Q_{\alpha,lm} [\mathscr{T}^{\alpha}(k)]^{-1}_{l'm'lm} Q_{\alpha,l'm'} + c.c.$$

and we are left with the functional integral

$$\mathscr{U}_{\mathscr{C}}(k) = \prod_{\alpha} \int [\mathscr{D}\rho_{\alpha}(\vec{x})\mathscr{D}\rho_{\alpha}^{*}(\vec{x})]$$

$$\exp\left\{\frac{k}{2}\sum_{\alpha}\sum_{lm,l'm'}Q_{\alpha,lm}^{*}(\mathbb{T}_{\alpha}^{-1})_{lm,l'm'}Q_{\alpha,l'm'} - \frac{k}{2}\sum_{\alpha\neq\beta}\sum_{lm,l'm'}Q_{\alpha,lm}^{*}(\mathbb{U}_{\alpha\beta})_{lm,l'm'}Q_{\alpha,l'm'} - c.c.\right\}$$

$$= \text{Jacobian} \times \prod_{\alpha,l.m}\left\{\int dQ_{\alpha,lm}\int dQ_{\alpha,lm}^{*}\right\}\exp\left\{\dots\right\}$$

Jacobian is independent of functional integration variables $(Q - \rho)$ relation linear) and drops out with denominator.

Casimir force: averaged interaction between fluctuating charges

The end result is:

$$\Xi_{\mathscr{C}} = -rac{\hbar c}{\pi} \int_{0}^{\infty} d\kappa \ln rac{\det \mathbb{M}_{\mathscr{C}}(i\kappa)}{\det \mathbb{M}_{\infty}(i\kappa)}$$

$$\mathbb{M}(k) = \begin{pmatrix} \mathbb{T}_{1}^{-1} & \mathbb{U}_{12} & \cdots & \mathbb{U}_{1N} \\ \mathbb{U}_{21} & \mathbb{T}_{2}^{-1} & \cdots & \mathbb{U}_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{U}_{N1} & \mathbb{U}_{N2} & \cdots & \mathbb{T}_{N}^{-1} \end{pmatrix} \quad \mathbb{M}_{\infty}(k) = \begin{pmatrix} \mathbb{T}_{1}^{-1} & 0 & \cdots & 0 \\ 0 & \mathbb{T}_{2}^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbb{T}_{N}^{-1} \end{pmatrix}$$

For two bodies:

$$\mathsf{E}_{12}(\mathscr{C}) = -\frac{\hbar c}{\pi} \int_0^\infty d\kappa \mathrm{Tr} \ln\left(1 - \mathbb{T}^1 \mathbb{U}^{12} \mathbb{T}^2 \mathbb{U}^{21}\right)$$

Note: this is entirely finite, convergent and physically meaningful.

(日) (四) (분) (분) (분) 분

General formula for planar situations

In one space dimension it is easy to derive the Casimir interaction with other methods:

$$E_{12}(L) = -\frac{\hbar c}{\pi} \int_0^\infty d\kappa \log \left[1 - e^{-2\kappa L} R_1(i\kappa) R_2(i\kappa) \right]$$

where $R_{1,2}(\omega)$ is the reflection coefficient of the mode ω on the boundaries and

$$e^{-2\kappa L} = e^{2i\omega L} = e^{2i|k|L}$$
, $\omega = |k|$

So here:

$$\mathbb{T}^1 = R_1(\omega) \qquad \mathbb{T}^2 = e^{i\omega L} R_2(\omega)$$
$$\mathbb{U}^{12} = \mathbb{U}^{21} = e^{2i\omega L}$$

which looks really sensible. This also extends to planar situations

$$E_{12}(L) = -\frac{\hbar c}{\pi} \int_0^\infty d\kappa \int d\vec{k}_\perp \log\left[1 - e^{-2L\sqrt{\kappa^2 + \vec{k}_\perp^2 + m^2}} R_1(i\kappa, \vec{k}_\perp) R_2(i\kappa, \vec{k}_\perp)\right]$$

(Bajnok, Palla & Takács, hep-th/0506089).

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence

4 Comments on Casimir force and zero-point energy

- Zero-point energy
- Why does the ZPE derivation work?
- Casimir force and van der Waals interaction

《曰》 《圖》 《圖》 《圖》

- E

- 5 Time dependent boundaries
- 6 Gravitational aspects
- One related topics

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- Comments on Casimir force and zero-point energy
 - Zero-point energy
 - Why does the ZPE derivation work?
 - Casimir force and van der Waals interaction

(中) (종) (종) (종) (종) (종)

- 5 Time dependent boundaries
- 6 Gravitational aspects
- 7 Some related topics

Does the Casimir force originate from zero-point energy?

Mystery: a naive consideration of zero modes leads to a **huge** vacuum energy density. Quantum field

$$\begin{split} \Phi(\vec{x},t) &= \int \frac{d^{d}\vec{k}}{(2\pi)^{d/2}} \frac{1}{\sqrt{2\omega(\vec{k})}} \left(a(\vec{k})e^{-i\omega(\vec{k})t+i\vec{k}\cdot\vec{x}} + a^{\dagger}(\vec{k})e^{+i\omega(\vec{k})t-i\vec{k}\cdot\vec{x}} \right) \\ H &= \int d^{d}\vec{x} T_{00} = \int d^{d}\vec{x} \frac{1}{2} (\partial_{t}\Phi)^{2} + \frac{1}{2} \left(\vec{\nabla}\Phi\right)^{2} \\ &= \int \frac{d^{d}\vec{k}}{(2\pi)^{d}} \omega(\vec{k}) \frac{1}{2} \left[a^{\dagger}(\vec{k})a(\vec{k}) + a(\vec{k})a^{\dagger}(\vec{k}) \right] \\ &= \int \frac{d^{d}\vec{k}}{(2\pi)^{d}} \omega(\vec{k})a^{\dagger}(\vec{k})a(\vec{k}) + \int \frac{d^{d}\vec{k}}{(2\pi)^{d}} \frac{1}{2} \omega(\vec{k})\delta(0) \end{split}$$

With $\delta(0) = (2\pi)^d V$, d = 3 and a high energy cutoff Λ we get an energy density

$$\frac{E_0}{V} = \int_0^{\Lambda} k^2 dk \frac{1}{2} k \propto \Lambda^4$$

The naive vacuum energy density and the QFT Hamiltonian

QFT (Standard Model) valid at least up to $\Lambda \sim 1$ TeV: $\frac{E_0}{V} \sim 10^{47} \frac{\text{J}}{\text{m}^3}$ If $\Lambda = M_{\text{Planck}} \sim 10^{19} \text{ GeV}$: $\frac{E_0}{V} \sim 10^{110} \frac{\text{J}}{\text{m}^3}$ How comes the Casimir force is such a small effect?

Crucial observation: quantum Hamiltonian is not uniquely fixed!

E.g.: why is the standard mass point Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2M} + V(\hat{q})$$

Explanation: this comes from correspondence principle

$$\frac{d}{dt}\hat{\mathcal{O}} = \frac{i}{\hbar}[\hat{H},\hat{\mathcal{O}}] \qquad [\hat{q},\hat{\rho}] = i\hbar$$
$$\frac{d}{dt}\hat{q} = \frac{\hat{\rho}}{M} \qquad \frac{d}{dt}\hat{\rho} = -V'(\hat{q})$$

 $\hbar \rightarrow 0: \hat{q}, \hat{p} \text{ commute} \Rightarrow \text{simultaneously diagonalizable} \Rightarrow$ eigenvalues obey classical equations of motion. The naive vacuum energy density and the QFT Hamiltonian

A perfectly good Hamiltonian for QFT is given by

$$H = \int d^{d}\vec{x} T_{00} = \int d^{d}\vec{x} : \frac{1}{2}(\partial_{t}\Phi)^{2} + \frac{1}{2}\left(\vec{\nabla}\Phi\right)^{2} :$$

= $\int \frac{d^{d}\vec{k}}{(2\pi)^{d}}\omega(\vec{k})\frac{1}{2} : a^{\dagger}(\vec{k})a(\vec{k}) + a(\vec{k})a^{\dagger}(\vec{k}) := \int \frac{d^{d}\vec{k}}{(2\pi)^{d}}\omega(\vec{k})a^{\dagger}(\vec{k})a(\vec{k})$

Moral: QFT does not predict vacuum energy density! Some other interaction is needed \Rightarrow gravity. Einstein's "greatest mistake":

$$R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R+\lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

$$T^{(\lambda)\nu}_{\mu} = -\frac{c^4\lambda}{8\pi G}g^{\nu}_{\mu} = \mathscr{E}g^{\nu}_{\mu}$$

Cosmological constant: $p = -\mathscr{E}$. Present concordance cosmology (ACDM):

$$\mathscr{E} \sim 5.4 \times 10^{-10} \, \frac{\mathrm{J}}{\mathrm{m}^3}$$

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- Comments on Casimir force and zero-point energy
 Zero-point energy
 - Why does the ZPE derivation work?
 - Casimir force and van der Waals interaction

(中) (종) (종) (종) (종) (종)

- 5 Time dependent boundaries
- 6 Gravitational aspects
- 7 Some related topics

Why does the zero-point energy derivation work?

Energy of a point charge

$$E = \frac{e}{4\pi\varepsilon_0 r^2} \Rightarrow \mathscr{E} = \frac{1}{2}\varepsilon_0 \vec{E}^2 = \frac{e^2}{32\pi^2\varepsilon_0 r^4}$$

Field energy:

$$\int_{r_0}^{\infty} 4\pi r^2 \mathscr{E} dr = \frac{e^2}{8\pi\varepsilon_0 r_0}$$

 $r_0 = 0$: divergent! Renormalization:

$$m_{\rm phys}c^2 = m_0c^2 + \frac{e^2}{8\pi\varepsilon_0r_0}$$

・ロト ・四ト ・ヨト ・ヨト

m_{phys}: physical mass: the only observable.

Radius of the electron

Physical mass

$$m_{\rm phys}c^2 = m_0c^2 + \frac{e^2}{8\pi\varepsilon_0r_0}$$

 $m_0 = 0$: classical electron radius

$$r_0 \sim 10^{-15} m$$

Present experiments: $r_0 < 10^{-18} m$

QED self-energy:

$$m_0 c^2 = m_{\text{phys}} c^2 \left(1 - \frac{3\alpha}{4\pi} \log \left(\frac{\lambda_{\text{Compton}}^2}{r_0^2} + \frac{1}{2} \right) + O(\alpha^2) \right)$$
$$\lambda_{\text{Compton}} = 2.4263102175(33) \times 10^{-12} \, m$$

 $r_0 \sim 10^{-18}m$: 5% correction. Theoretical limit: $m_0 > 0 \rightarrow r_0 > 10^{-136}m$

Two point charges

Figure : Two point charges with distance d

$$\begin{split} \mathrm{E}(d) &= \int d^{3}\vec{x}\mathscr{E} \quad \text{still divergent for } r_{0} = 0 \\ \text{but: } \mathrm{E}(d_{1}) - \mathrm{E}(d_{2}) &= \frac{e_{1}e_{2}}{4\pi\varepsilon_{0}}\left(\frac{1}{d_{1}} - \frac{1}{d_{2}}\right) \quad \text{finite!} \\ \text{Interaction energy: } \quad \mathrm{E}_{int}(d) &= \frac{e_{1}e_{2}}{4\pi\varepsilon_{0}d} \end{split}$$

This works because

$$W_{\text{Lorentz}} = -\int d^3 \vec{x} \Delta \mathscr{E}$$
- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- Omments on Casimir force and zero-point energy
 - Zero-point energy
 - Why does the ZPE derivation work?
 - Casimir force and van der Waals interaction

(=) (④) (=) (=) (=)

- 5 Time dependent boundaries
- 6 Gravitational aspects
- 7 Some related topics

Casimir effect and and van der Waals interaction

van der Waals force = interaction between fluctuating dipols

$$H_{int} = \frac{\vec{d}_1 \cdot \vec{d}_2 r^2 - 3(\vec{d}_1 \cdot \vec{r})(\vec{d}_2 \cdot \vec{r})}{r^5}$$
$$V_{eff} = \sum_{m \neq 0} \frac{\langle 0|H_{int}|m\rangle \langle m|H_{int}|0\rangle}{E_0 - E_m} \propto r^{-6}$$

Original problem investigated by Casimir & Polder: retardation effects on vdW force

Dielectric ball: Casimir self-stress \equiv vdW forces

Casimir effect = relativistic vdW

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
 - Velocity dependence of Casimir force
 - Dynamical Casimir effect: particle creation

12

- 6 Gravitational aspects
- Some related topics

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
 - Velocity dependence of Casimir force
 - Dynamical Casimir effect: particle creation

1

・ロト ・四ト ・ヨト ・ヨト

- 6 Gravitational aspects
- Some related topics

Moving boundary

Plates: $K : x^3 = 0$ and $K' : x^3 = vt$. Solve for Dirichlet Green's function (scalar field):

$$egin{aligned} & \left(\partial_t^2 -
abla^2
ight) \mathcal{G}(x,x') = -\delta(x-x') \ & \mathcal{G}(x,x') = 0 \qquad x,x' \in \mathcal{K} ext{ or } \mathcal{K}' \end{aligned}$$

Energy density

$$\langle 0|T_{00}(x)|0\rangle = \frac{1}{2}\sum_{k=0}^{3} \langle 0|\partial_k \Phi(x)\partial_k \Phi(x)|0\rangle = \frac{i}{2}\lim_{x'\to x}\sum_{k=0}^{3} \partial_k \partial'_k G(x,x')$$

Solution in $x^3 < 0$: using method of images

$$G^{>}(x,x') = \frac{i}{4\pi^{2}} \left[\frac{1}{(x-x')^{2}} - \frac{1}{(x-S_{K}x')^{2}} \right]$$
$$S_{K} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Moving boundary II

Solution for $x_3 > vt$: use Lorentz transform to get into system of K', find image, transform back.

$$G^{>}(x,x') = \frac{i}{4\pi^2} \left[\frac{1}{(x-x')^2} - \frac{1}{(x-S_{K'}x')^2} \right]$$
$$S_{K'} = \begin{pmatrix} \cosh s & 0 & 0 & -\sinh s \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \sinh s & 0 & 0 & -\cosh s \end{pmatrix} \qquad s = \log \frac{c-v}{c+c}$$

Solution in between: infinitely many images

$$G^{in}(x,x') = \frac{i}{4\pi^2} \sum_{m=-\infty}^{\infty} (-1)^m \frac{1}{(x-x'_m)^2}$$
$$x'_{2m} = (S_K S_{K'})^m x' \qquad x'_{2m-1} = S_K (S_K S_{K'})^m x'$$
$$x'_{-2m} = (S_{K'} S_K)^m x' \qquad x'_{-2m-1} = S_K (S_{K'} S_K)^m x'$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Moving boundary III

Renormalization: eliminate vacuum contribution, which is the term

$$G_0=\frac{i}{4\pi^2(x-x')^2}$$

in all three domains. Force per unit area:

$$\mathscr{F}(a(t)) = -\frac{d}{d(vt)} \int_{-\infty}^{\infty} dx^3 \langle 0|T_{00}(x)|0\rangle \qquad a(t) = vt$$
$$= -\frac{\pi^2}{480a(t)^4} \left[1 + \frac{8}{3} \left(\frac{v}{c}\right)^2 + O\left(\frac{v^4}{c^4}\right)\right]$$

Electromagnetic case:

$$\mathscr{F}(a(t)) = -\frac{\pi^2}{240a(t)^4} \left[1 + \left(\frac{10}{\pi^2} - \frac{2}{3}\right) \left(\frac{v}{c}\right)^2 + O\left(\frac{v^4}{c^4}\right) \right] \qquad v \ll c$$
$$= -\frac{3}{8\pi^2 a(t)^4} \left[1 + \frac{(c^2 - v^2)^2}{16c^4} + O\left(\frac{(c^2 - v^2)^4}{c^8}\right) \right] \qquad v \ll c$$

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries
 - Velocity dependence of Casimir force
 - Dynamical Casimir effect: particle creation

(ロ) (@) (분) (분) 분

- 6 Gravitational aspects
- Some related topics

Dynamical Casimir effect

Scalar field in 2d

$$\partial_t^2 \Phi - c^2 \partial_x^2 \Phi = 0$$

Take an interval (0, a(t)), where $a(t) = a_0$ for t < 0. The field is

$$\Phi(t,x) = \sum_{n} \left(\chi_{n}^{(-)}(t,x) a_{n} + \chi_{n}^{(+)}(t,x) a_{n}^{\dagger} \right)$$
$$\chi_{n}^{(\pm)}(t \leq 0, x) = \frac{1}{\sqrt{\pi n}} e^{\pm i\omega_{n}t} \sin \frac{\pi n x}{a_{0}} \quad \omega_{n} = \frac{c\pi n}{a_{0}}$$
$$\chi_{n}^{(-)}(t > 0, x) = \frac{1}{\sqrt{\pi n}} \sum_{k} Q_{nk}(t) \sqrt{\frac{a_{0}}{a(t)}} \sin \frac{\pi k x}{a(t)}$$
$$\chi_{n}^{(+)}(t > 0, x) = \left(\chi_{n}^{(-)}(t > 0, x) \right)^{*}$$

Initial conditions

$$Q_{nk}(0) = \delta_{nk}$$
 $Q'_{nk}(0) = -i\omega_n\delta_{nk}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Equation of motion

Field equation gives

$$\begin{aligned} Q_{nk}''(t) &+ \omega_k^2(t) Q_{nk}(t) \\ &= \sum_j h_{kj} \left[2v(t) Q_{nj}'(t) + v'(t) Q_{nj}(t) - v(t)^2 \sum_l h_{jl} Q_{nl}(t) \right] \\ \omega_k(t) &= \frac{c\pi k}{a(t)} \qquad v(t) = \frac{a'(t)}{a(t)} \\ h_{kj} &= -h_{jk} = (-1)^{k-j} \frac{2kj}{j^2 - k^2} \qquad j \neq k \end{aligned}$$

Suppose that $a(T) = a_0$ after some time $T \Rightarrow$

$$t > T : Q_{nk}(t) = \alpha_{nk} e^{-i\omega_k t} + \beta_{nk} e^{i\omega_k t}$$

$$\Phi(t, x) = \sum_n \left(\phi_n^{(-)}(t, x) b_n + \phi_n^{(+)}(t, x) b_n^{\dagger} \right)$$

$$\phi_n^{(\pm)}(t, x) = \frac{1}{\sqrt{\pi n}} e^{\pm i\omega_n t} \sin \frac{\pi n x}{a_0} \quad \omega_n = \frac{c \pi n}{a_0}$$

Bogolyubov transform

$$b_k = \sum_n \sqrt{rac{k}{n}} \left(lpha_{nk} a_n + eta_{nk}^* a_n^\dagger
ight)$$

Unitarity: $\sum_k k \left(|lpha_{nk}|^2 - |eta_{nk}|^2
ight) = n$

In- and out-vacuum:

$$a_k|0\rangle_{in}=0$$
 $b_k|0\rangle_{out}=0$

Number of created particles:

$$n_{k} = {}_{in} \langle 0 | b_{k}^{\dagger} b_{k} | 0 \rangle_{in} = k \sum_{n=1}^{\infty} \frac{1}{n} | \beta_{nk} |^{2}$$
$$N = \sum_{k=1}^{\infty} n_{k}$$

Enhancing effect: parametric resonance. E.g.

$$a(t) = a_0 \left[1 + \varepsilon \sin(2\omega_1 t) \right]$$
$$\omega_1 = \frac{c\pi}{a_0}$$

Particle creation

Solution is long, but result is that only odd modes are populated and

$$n_1(t) pprox au^2 \qquad au \ll 1$$

 $n_1(t) pprox rac{4}{\pi^2} au \quad au \gg 1 \qquad au = arepsilon \omega_1 au$
 $E(t) = \omega_1 \sum_k k n_k(t) = rac{1}{4} \omega_1^2 \sinh^2(2\pi)$

Typical values for photons in cm cavity $\varpi_1\sim 60\,\text{GHz}$ maximum endurance for wall materials $\varepsilon_{max}\sim 3\times 10^{-8}$

$$rac{dn_1}{dt} pprox rac{4}{\pi^2} arepsilon_{max} \omega_1 \sim 700 \,\, {
m s}^{-1}$$

Total number created is typically thousands of photons per second. Effects to take into account: finite wall reflectivity, detector interaction.

Nonzero temperature: factor $\sim 10^3$ at room temperature.

Experiments

MIR (Motion Induced Radiation, Padova) :(

C.M. Wilson et al., 2011 Nature **479**: 376-379 Microwave line: 100μ m "Mirror motion": ~ nm

Microwave line modulated by a SQUID: success!

590

- 1 Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries

6 Gravitational aspects

- Local effects: the energy-momentum tensor
- How does Casimir energy fall?
- Cosmological constant from Casimir energy of extra dimensions

・ロン ・四マ ・ヨマ ・ロン

- 12

Non-Newtonian gravity

7 Some related topics

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries

6 Gravitational aspects

- Local effects: the energy-momentum tensor
- How does Casimir energy fall?
- Cosmological constant from Casimir energy of extra dimensions
 Non-Newtonian gravity

(=) (④) (=) (=) (=)

7 Some related topics

Energy density

Scalar field, Dirichlet plates: Green's function of a given mode

Wick rotate $\omega \rightarrow i\zeta$, $\lambda \rightarrow i\kappa$ and use polar coordinates $\zeta = \kappa \cos \theta$, $k = \kappa \sin \theta$:

$$\langle T_{00} \rangle = -\frac{1}{4\pi^2} \int_0^\infty \kappa d\kappa \int_0^{\pi/2} d\theta \kappa^2 \frac{\sin\theta}{\sinh\kappa a} \left[\cos^2\theta \cosh\kappa a + \sin^2\theta \cosh\kappa (2z-a) \right]$$

$$\langle T_{00} \rangle = -\frac{1}{6\pi^2} \int_0^\infty d\kappa \kappa^3 \left(\frac{1}{e^{2\kappa a} - 1} + \frac{1}{2} + \frac{e^{2\kappa z} + e^{2\kappa(a - z)}}{e^{2\kappa a} - 1} \right)$$

The second term is the vacuum constant, to be discarded. The result is

$$\langle T_{00} \rangle = u + g(z)$$

$$u = -\frac{\pi^2}{1440a^4}$$

$$g(z) = -\frac{1}{6\pi^2} \frac{1}{16a^4} \int_0^\infty dy y^3 \frac{e^{yz} + e^{y(1-z/a)}}{e^y - 1}$$

$$= -\frac{1}{16\pi^2 a^4} [\zeta(4, z/a) + \zeta(4, 1 - z/a)]$$

$$\zeta(s, z) = \sum_{n=0}^\infty \frac{1}{(n+a)^s}$$
Hurwitz zeta

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへの

Energy density III

g(z) diverges at z = 0, a. Fortunately

$$\int_0^a dz \left[e^{2\kappa z} + e^{2\kappa(a-z)} \right] == \frac{1}{\kappa} \left[e^{2\kappa a} - 1 \right]$$

so, although its integral is divergent, it is also *a*-independent and does not contribute to the force.

Similar calculation gives T_{xx} , T_{yy} , T_{zz}

$$\langle T^{\mu\nu}\rangle = u \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} + g(z) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Energy-momentum tensor

The energy-momentum tensor is not unique: instead of canonical we may use the conformal one

$$\tilde{\mathcal{T}}^{\mu\nu} = \mathcal{T}^{\mu\nu} - \frac{1}{6} \left(\partial^{\mu} \partial^{\nu} - g^{\mu\nu} \partial^2 \right) \Phi^2$$

for which

$$\tilde{T}^{\mu}_{\mu} = 0$$

Then

$$\langle T^{\mu\nu} \rangle = u \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \qquad u = -\frac{\pi^2}{1440a^4}$$

Casimir pressure and energy density

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries

6 Gravitational aspects

- Local effects: the energy-momentum tensor
- How does Casimir energy fall?
- Cosmological constant from Casimir energy of extra dimensionsNon-Newtonian gravity

(=) (④) (=) (=) (=)

7 Some related topics

Binding energy: mass defect Chemical bonds: $\Delta m/m = 10^{-9}$ $\downarrow \downarrow$ The equivalence principle is valid for EM energy with at least 10^{-3} precision!

<ロト (四) (三) (三)

Between parallel plates

$$\langle T^{\mu\nu} \rangle = u \begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 & \\ & & & 3 \end{pmatrix} \theta(z)\theta(a-z)$$

$$u = -\frac{\pi^2 \hbar c}{1440a^4} \qquad \qquad z=0 \qquad z=a$$

Remarks:

1. Volume divergence ("ZPE") trivially eliminated.

$$u_0 = \frac{\hbar}{2} \int \frac{d^3 \vec{k}}{(2\pi)^3} c \left| \vec{k} \right|$$

2. Surface divergence $\propto z^{-4} \Rightarrow$ renormalizing mass of plates.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Equivalence principle holds!

Gravitation energy in weak field limit:

$$E_g = -\int d^3\vec{x}\,h_{\mu\nu}(\vec{x})\,T^{\mu\nu}(\vec{x})$$

Problem: E_g is not gauge invariant!

$$h_{\mu\nu}
ightarrow h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} : \Delta E_{g} = 2\int d^{3}\vec{x}\xi_{\mu}\partial_{\nu}T^{\mu\nu}$$

Why? $\partial_{\nu} T^{\mu\nu} \neq 0$: there is a force on the plates! Solution: Use locally inertial coordinates (K.A. Milton et al.): Fermi coordinates: g_{ij} quadratic in distance from origin. Locally

$$h_{00} = -gz \qquad h_{0i} = h_{ij} = 0$$

$$E_g = gz_0 uAa + \text{const} = gz_0 E_{\text{Casimir}} + \text{const}$$

which is just right! A full analysis: K.A. Milton et al: *How does Casimir energy fall? IV*, arXiv:1401.0784

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries

6 Gravitational aspects

- Local effects: the energy-momentum tensor
- How does Casimir energy fall?
- Cosmological constant from Casimir energy of extra dimensions
 Non-Newtonian gravity

(=) (④) (=) (=) (=)

7 Some related topics

Compact extra dimensions

Compact extra dimensions: Kaluza-Klein theory, later resurrected by string theory.

...but a flea can move in two dimensions.

Space-time:
$$M = M_4 \times K$$

 $\langle T^{\mu\nu} \rangle = -u(a)g^{\mu\nu} = -\frac{\Lambda}{8\pi G}g^{\mu\nu}$

Case of a sphere: $K = S^N$

Casimir energy of free massless scalar, for odd N

$$u(a) = -\frac{1}{64\pi^2 a^4} \operatorname{Re} \int_0^\infty dy [y^2 - i(N-1)y^2] D(iy) \frac{2\pi}{e^{2\pi y} - 1}$$
$$D_l = \frac{(2l+N-1)(l+N-2)!}{(N-1)!l!}$$
$$N = 1: u(a) = -\frac{3\zeta(5)}{64\pi^6 a^4} \approx -\frac{5 \times 10^{-5}}{a^4}$$

For even N u(a) is logarithmically divergent; cutoff is necessary:

$$u(a) = \frac{1}{a^4} \left[\alpha_N \log \frac{a}{b} + \text{const} \right]$$
$$\alpha_N = \frac{1}{16\pi^2} \text{Im} \int_0^\infty \frac{dt}{e^{2\pi t} - 1} [(N-1)it - t^2]^2 D(it)$$

b: frequency cut-off, presumably Planck scale. For large extra dimensions $a/b \sim 10^{16}$: logarithmic term sufficient for estimate.

Estimate for size of extra dimensions

Cosmological constant (ACDM concordance cosmology)

$$\Lambda \sim
ho_c \sim 10^{-5} rac{ ext{GeV}}{ ext{cm}^3}$$

Maximum value for coefficient

$$u(a)\sim rac{10^{-3}}{a^4}$$

Restoring units using $\hbar c = 2 \times 10^{-14}$ GeV cm we find

$$a^4 \sim 10^2 rac{\mathrm{cm}^3}{\mathrm{GeV}} \hbar c \sim 10^{-12} \mathrm{cm}^4$$

 $a \sim 10 \ \mu \mathrm{m}$

Such a compact dimension would lead to non-Newtonian gravity on a submm scale.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- 4 Comments on Casimir force and zero-point energy
- 5 Time dependent boundaries

6 Gravitational aspects

- Local effects: the energy-momentum tensor
- How does Casimir energy fall?
- Cosmological constant from Casimir energy of extra dimensions

(=) (④) (=) (=) (=)

Non-Newtonian gravity

7 Some related topics

Non-Newtonian gravity experiments

E.g. searching for a correction of the form

$$V(r) = \alpha \frac{\mathrm{e}^{-r/\lambda}}{r}$$

Presently: extra dimensions with size around 100 μ m are ruled out.

(日) (四) (三) (三)

æ

- 1 Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- Omments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- Some related topics
 - Vacuum birefringence
 - Axions
 - Sonoluminescence

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence

(=) (④) (=) (=) (=)

- 3 Realistic cases II: geometry dependence
- Omments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- Some related topics
 - Vacuum birefringence
 - Axions
 - Sonoluminescence

Vacuum birefringence

$$\mathscr{L}_{\text{effective}} = \frac{1}{2} \left(\vec{E}^2 - \vec{B}^2 \right) + \frac{\xi}{2} \left(\left(\vec{E}^2 - \vec{B}^2 \right)^2 + 7 \left(\vec{E} \cdot \vec{B} \right)^2 \right)$$

PVLAS (Polarizzazione del Vuoto con LASer, INFN, Padova) G. Zavattini et al, QFEXT11, arXiv:1201.2309

Factor of 10^4 needed to reach sensitivity to QED: no signal yet! \rightarrow can still look for axion signal

- 1 Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence

(日) (四) (분) (분) (분) 분

- 3 Realistic cases II: geometry dependence
- Omments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- Some related topics
 - Vacuum birefringence
 - Axions
 - Sonoluminescence

Axions

$$\mathscr{L} = \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_{a}^{2}a^{2} + \frac{1}{2}\left(\varepsilon\vec{E}^{2} - \vec{B}^{2}\right) - g_{a}a\vec{E}\cdot\vec{B}$$

Axions induce vacuum birefringence

PVLAS had a signal, turned out to be detector effect on reanalysis

Shining light through walls

It is possible to shine light through walls using e.g. axions.

Standard modell contributions

Graviton conversion very weak:

Neutrino conversion is even weaker:

$$P(\gamma \to g \to \gamma) \sim 10^{-83} \left(\frac{B}{11}\right)^4 \left(\frac{L}{1m}\right)^4$$

Shining light through walls: beyond the standard model

(a) Axions (b) Hidden sector γ (c) Hidden γ enhanced by MCP (MCP: milli-charged particles)

ALP experiment (DESY), using HERA magnet **So far no signal**...

J. Redondo and A. Ringwald: Light shining through walls, arXiv:1011.3741.
Outline

- Introduction: QED and the Casimir effect
- 2 Realistic cases I: temperature and material dependence
- 3 Realistic cases II: geometry dependence
- Omments on Casimir force and zero-point energy
- 5 Time dependent boundaries
- 6 Gravitational aspects
- 7 Some related topics
 - Vacuum birefringence
 - Axions
 - Sonoluminescence

Sonoluminescence

Collapsing bubble emits flash of light $a\sim 10^{-3}$ cm, overpressure ~ 1 atm, $f\sim 10^4$ Hz, $E_{tot}\sim 10$ MeV

Schwinger: divergent bulk contribution

$$E_{bulk} = \frac{4\pi a^3}{3} \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{2} k \left(1 - \frac{1}{n} \right)$$

Schwinger estimate (adiabatic approximation):

$$E_{bulk} \sim rac{a^3 K^4}{12 \pi} \left(1 - rac{1}{\sqrt{arepsilon}}
ight)$$

Putting in $a \sim 4 \times 10^{-3}$ cm, cutoff $K \sim 2 \times 10^{5}$ cm⁻¹ (UV), $\sqrt{\epsilon} \sim 4/3$:

 $E_c \sim 13$ MeV

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のQ@

Casimir calculations

Casimir energy for dielectric sphere (renormalized by bulk subtraction, equal to vdW!)

$$E = rac{23}{1536\pi a} \left(arepsilon - 1
ight)^2 \qquad \left(ert arepsilon - 1ert \ll 1
ight)$$

Experiment: $a_i \sim 4 imes 10^{-3}$ cm to $a_f \sim 4 imes 10^{-4}$ cm

$$\Delta E \sim -10^{-4}$$
 eV

Dynamical Casimir effect? Radiated energy spectrum: $T\sim 10^4$ K. Simple estimate using results from Unruh effect:

Unruh temperature:
$$T = \frac{\hbar A}{2\pi c}$$
 Acceleration: $A \sim \frac{a}{\tau^2}$

we get $\tau \sim 10^{-15}$ s which is way too short! Experiment: collapse time scale 10^{-4} s, emission 10^{-11} s. Best present explanation: towards end of bubble collapse $T \sim 10^4$ K, ionized noble gas radiates.

K.A. Milton, arXiv:hep-th/0009173