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Quantum theory of the electromagnetic field

Relativistic quantum electrodynamics (QED)

1948: Feynman, Schwinger, Tomonaga (Nobel prize: 1965)

L =−1

4
FµνF

µν + ψ̄
(
iγµ(∂µ + ieAµ)−m

)
ψ Fµν = ∂µAν −∂νAµ

Theory of the photon and the electron/positron field
(Origins: Dirac, Pauli, Weisskopf, Jordan; 1927-)



Experimental confirmation of QED

α =
e2

4πε0h̄c
fine structure constant

e− anomalous magnetic moment : 1/α = 137.035999710(96)

Nuclear recoil: 1/α = 137.03599878(91)

Hyperfine splitting in muonium: 1/α = 137.035994(18)

Lamb shift: 1/α = 137.0368(7)

Quantum Hall effect: 1/α = 137.0359979(32)

QED: „quod erat demonstrandum”
– the most precisely validated physical theory!
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The discovery of the Casimir effect

Attractive force between two perfect conductor plane in
vacuum (Casimir, 1948)

F

A
=− h̄cπ2

240a4

A macroscopic prediction of QED:
1 µm distance: 8.169×10−3 Pa

Lamoreaux,
1996:
experimental
verification
within 5%



Naive derivation: from vacuum energy I

Scalar field with Dirichlet BC (units: h̄ = 1 = c)

φ(z = 0) = φ(z = a) = 0

E =
1

2 ∑ h̄ω =
1

2

∞

∑
n=1

∫
d2k

(2π)2

√

k2+
(nπ

a

)2

This is divergent, but we can use dimensional regularization.
Using

∫ ∞

0

dt

t
t−ne−zt = Γ(−n)zn

∫

ddk e−tk2

=
(π

t

)d/2

we can write

E =
1

2 ∑
n

∫
ddk

(2π)d

∫ ∞

0

dt

t
t−1/2e−t(k2+n2π2/a2) 1

Γ(−1/2)

=− 1

4
√

π

1

(4π)d/2
∑
n

∫ ∞

0

dt

t
t−1/2−d/2e−tn2π2/a2



Naive derivation: from vacuum energy II

E =− 1

4
√

π

1

(4π)d/2
∑
n

∫ ∞

0

dt

t
t−1/2−d/2e−tn2π2/a2

=− 1

4
√

π

1

(4π)d/2

(π

a

)1+d

Γ

(

−d+1

2

)

∑
n

nd+1 Re d <−1

=− 1

4
√

π

1

(4π)d/2

(π

a

)1+d

Γ

(

−d+1

2

)

ζ (−d−1) Re d <−2

= ∞ ·0 for d positive odd integer

Physical: d ∈ N → analytic continuation is needed!

Γ
(z

2

)

ζ (z)π−z/2 = Γ

(
1− z

2

)

ζ (1− z)π−(1−z)/2

E =− 1

2d+2πd/2+1

1

ad+1
Γ

(

1+
d

2

)

ζ (2+d) →
d=3

− π2

1440

1

a3

Pressure: F =−∂E

∂a
=− π2

480

1

a4
EM: 2×
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A physical derivation: from momentum flow I

Energy-momentum tensor

Tµν = ∂µφ(x)∂ν φ(x)−ηµνL (x)

L (x) =
1

2
∂µφ(x)∂ µ φ(x)

Left plate at z = 0: what we want is

F = 〈Tzz〉z>0−〈Tzz〉z<0

How do we compute? From QFT
〈
Tφ(x)φ(x ′)

〉
=−iG (x ,x ′)

Now

−∂ 2G (x ,x ′) = δ (x− x ′)

G (x ,x ′) =
∫

ddk

(2π)d
e i
~k ·(~x−~x ′)

∫
dω

2π
e−iω(t−t ′)g(z ,z ′|~k ,ω)

−
(

∂ 2

∂z2
−λ 2

)

g(z ,z ′) = δ (z − z ′) λ 2 = ω2− k2

g(0,z ′) = g(a,z ′) = 0



A physical derivation: from momentum flow II

Internal contribution

gint(z ,z
′) =− 1

λ sinλa
sinλz< sinλ (z>− a)

⇓

t int
zz =

1

2i
∂z∂z ′gint(z ,z

′)|z→z ′=0 =
i

2
λ cotλa

so

Fint =

∫
ddk

(2π)d

∫
dω

2π

i

2
λ cotλa

=−1

2

∫
ddk

(2π)d

∫
dζ

2π
κ cothκa divergent!

with ω → iζ λ → iκ = i
√

k2+ζ 2

Outer contribution

gout(z ,z
′) =

1

λ
sinλz<e

ikz>

tout
zz =

1

2i
∂z∂z ′gout(z ,z

′)|z→z ′=0 =
1

2
λ

so the total is



A physical derivation: from momentum flow III

F =−1

2

∫
dd~k

(2π)d

∫
dζ

2π
κ(cothκa−1) =−Ωd+1

∫ ∞

0

κddκ

(2π)d+1

κ

e2κa−1

Angular integral
∫

ddx e−~x
2

=

(∫

dξ e−ξ2

)d

= πd/2

=Ωd

∫

xd−1e−x2

dx =Ωd
Γ(d/2)

2
⇒ Ωd =

2πd/2

Γ[d/2]

Use

Γ(2z) =
22z−1/2

√
2π

Γ(z)Γ(z +1/2) Γ(s)ζ (s) =

∫ ∞

0
dy

y s−1

ey −1

to get

F =−(d+1)2−d−2π−d/2−1Γ(1+d/2)ζ (d +2)

ad+2
=− ∂

∂a
E (a)

with E (a) =− 1

2d+2πd/2+1

1

ad+1
Γ

(

1+
d

2

)

ζ (2+d)
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Massive scalar field

Massive scalar field

L (x) =
1

2
∂µφ(x)∂ µ φ(x)− 1

2
m2φ2

(∂µ∂ µ +m2)φ = 0

−(∂ 2 +m2)G (x ,x ′) = δ (x− x ′)

G (x ,x ′) =
∫

ddk

(2π)d
e i
~k ·(~x−~x ′)

∫
dω

2π
e−iω(t−t ′)g(z ,z ′|~k ,ω)

−
(

∂ 2

∂z2
−λ 2

)

g(z ,z ′) = δ (z − z ′) λ 2 = ω2− k2−m2

g(0,z ′) = g(a,z ′) = 0

F =−Ωd+1

∫ ∞

0

κddκ

(2π)d+1

√
κ2+m2

e2a
√

κ2+m2 −1



Massive scalar field II; EM field; fermions

E =
1

ad+1

1

2d+1π(d+1)/2Γ(d+1
2

)

∫ ∞

0
dt td log

(

1− e2
√
t2+m2a2

)

=−2
(ma

4π

)d/2+1 1

ad+1

∞

∑
n=1

1

nd/2+1
Kd/2+1(2nma)

Kn(x)∼
√

π

2x
e−x

(
1+O(x−1)

)

so the effect decays exponentially with ma.
For the EM field between perfectly conducting planes one needs to
consider 2 independent polarizations: 2× the result for scalar with
Dirichlet BC.
For fermions

L = ψ̄γµ∂µψ

proper BC is that no conserved current flows out (bag model):

(1+~n ·~γ)ψ |S = 0

Result for planar BC: 7/4 of the scalar force.
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A popular myth: mysterious force between ships at sea

Popular myth: ships attract at heavy
swell due to smaller wave pressure in
between.

The two situations were messed up:
Caussée claimed attraction in calm
sea (below), not in a swell (above)!

Nature, doi:10.1038/news060501-7

P. C. Caussée:
The Album of the Mariner
(1836)



Outline

1 Introduction: QED and the Casimir effect

2 Realistic cases I: temperature and material dependence
Temperature effects
Material effects
Dependence on the fine structure constant

3 Realistic cases II: geometry dependence

4 Comments on Casimir force and zero-point energy

5 Time dependent boundaries

6 Gravitational aspects

7 Some related topics



Outline

1 Introduction: QED and the Casimir effect

2 Realistic cases I: temperature and material dependence
Temperature effects
Material effects
Dependence on the fine structure constant

3 Realistic cases II: geometry dependence

4 Comments on Casimir force and zero-point energy

5 Time dependent boundaries

6 Gravitational aspects

7 Some related topics



Temperature dependence

Matsubara formalism

Z = Tr e−βH β =
1

T

〈φ2(~x)|e−i(t2−t1)H |φ1(~x)〉=
∫ φ(~x ,t2)=φ2(~x)

φ(~x ,t1)=φ1(~x)
[dφ ]e i

∫ t2
t1

dt
∫
ddxL

⇓ τ = it LE =−L |t→−iτ

Z =

∫

φ(~x ,β)=φ(~x ,0)
[dφ ]e−

∫ β
0
dτ
∫

ddxLE

Due to PBC in τ , the Euclidean frequencies are quantized

ζ → ζn =
2πn

β
fermions: APBC ζn =

π(2n+1)

β
∫

dζ

2π
→ 1

β ∑
n

FT =− 1

β

∫
dd~k

(2π)d ∑
n

κn

e2κna−1
κn =

√

k2+

(
2πn

β

)2



High-temperature limit is classical

T → ∞: only n = 0 term

FT =−T

∫
dd~k

(2π)d
k

e2ka−1
=−T

d

(2
√

πa)d+1
Γ

(
d+1

2

)

ζ (d +1)

Classical free energy

F =−T logZ = T ∑
~p

log(1− e−β |~p|)

= TV

∫
dd~k

(2π)d+1

π

a

∞

∑
n=−∞

log

(

1− e−β
√

~k2+n2π2/a2

)

For T → ∞ expand exponential and use logξ = d
ds

ξ s
∣
∣
s=0

F ∼ TV
1

2a

d

ds

∫
dd~k

(2π)d+1

∞

∑
n=−∞

1

2
β 2s

(
n2π2

a2
+ k2

)s
∣
∣
∣
∣
∣
s=0

=−TV
1

(2
√

πa)d+1
Γ

(
d+1

2

)

ζ (d +1)



High-temperature limit is classical

F ∼ TV
1

2a

d

ds

∫
dd~k

(2π)d+1

∞

∑
n=−∞

1

2
β 2s

(
n2π2

a2
+ k2

)s
∣
∣
∣
∣
∣
s=0

Now do the momentum integral, perform the summation using
ζ -function and use

d

ds

1

Γ(−s)

∣
∣
∣
∣
s=0

=−1

So the free energy is

F =−TV
1

(2
√

πa)d+1
Γ

(
d+1

2

)

ζ (d +1)

Now the pressure is

F =− ∂F

∂V
V = Aa⇒ ∂

∂V
=

1

A

∂

∂a

and this gives the same result

FT =−T
d

(2
√

πa)d+1
Γ

(
d+1

2

)

ζ (d +1)



Low-temperature limit

This is much more complicated: the result is not analytic in T .
The leading correction is

F ≈−(d+1)2−d−2π−d/2−1Γ(1+d/2)ζ (d +2)

ad+2

×
(

1+
1

d+1

(
2a

β

)d+2
)

but there are also corrections of the form
(
a

β

)...

e−...πβ/a

For details cf. Milton’s book.
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Material dependence

Lifschitz theory for dielectrics
in planar geometry

F
T=0 =− 1

16π3

∫ ∞

0
dζ

∫

d2~k2κ3

(
1

d
+

1

d ′

)

TE: d =
κ3+κ1

κ3−κ1

κ3+κ2

κ3−κ2
e2κ3a−1 TM: d ′ = d(κ → κ/ε)

κ2 = k2+ εζ 2 (ζ = iω)

Finite temperature:

ζ → ζn =
2πn

β
∫ ∞

0

dζ

2π
→ 1

β

∞

∑
n=0

′ (n = 0 with half weight)



Controversy over thermodynamics

One can rewrite the force (ε1 = ε2 = ε and ε3 = 1)

F
T =−T

π

∞

∑
n=0

′
∫ ∞

ζn
q2dq








Ane
−2qa

1−Ane−2qa
︸ ︷︷ ︸

TM mode

+
Bne

−2qa

1−Bne−2qa
︸ ︷︷ ︸

TE mode








ζn = 2πnT

An =

(
εp− s

εp+ s

)2

Bn =

(
p− s

p+ s

)2

s2 = ε −1+p2 p =
q

ζn

Limit of ideal metal: ε(iζn)→ ∞ . However, in the zero-frequency
TE mode, the limits do not commute:

first ε → ∞ then ζ → 0 : B0 → 1

first ζ → 0 then ε → ∞ : B0 → 0



Reflectivity of metals

In terms of reflectivity

An = r
(1)
TM(iζn,~k⊥)r

(2)
TM(iζn,~k⊥) Bn = r

(1)
TE (iζn,

~k⊥)r
(2)
TE (iζn,

~k⊥)

Ideal metals ε = ∞

rTM(ω ,~k⊥) = 1 rTE (ω ,~k⊥) =−1

so An = Bn = 1 for all n.
For real metals ε < ∞

rTM(0,~k⊥) = 1 rTE (0,~k⊥) = 0

so B0 = 0, and stays so in the limit ε → ∞.
Casimir free energy per unit surface

F =
T

2π

∞

∑
n=0

′
∫ ∞

ζn
qdq




log

(
1−Ane

−2qa
)

︸ ︷︷ ︸

TM mode

+ log
(
1−Bne

−2qa
)

︸ ︷︷ ︸

TE mode






F
T =−∂F

∂a



Ideal metal

Ideal metal: An = Bn = 1 for all n. Then

F
T =− π2

240a4

[

1+
1

3
(2aT )4

]

aT ≪ 1

Casimir free energy per unit surface

F =− π2

720a3








1+
45ζ (3)

π3
(2aT )3

︸ ︷︷ ︸

requires special care

−(2aT )4








ζ (3)≈ 1.2

Entropy

S =− ∂F

∂T
=

3ζ (3)

2π
T 2− 4π2a

45
T 3 aT ≪ 1

This is fine: S(T → 0) = 0.



Modified ideal and Drude metals

Drude model

ε(iζ ) = 1+
ω2
plasma

ζ (ζ +ν)

very good model for many metals in optical experiments for
ζ < 2 ·1015 Hz

(e.g. gold: ωp = 9.03 eV , ν = 0.0345 eV ). Whenever

lim
ζ→0

ζ 2 (ε(iζ )−1) = 0

the zero-frequency TE mode does not contribute, i.e. B0 = 0:

F
T =− π2

240a4

[

1+
1

3
(2aT )4

]

+
T

8πa3
ζ (3) aT ≪ 1

F =− π2

720a3

[

1+
45ζ (3)

π3
(2aT )3− (2aT )4

]

+
T

16πa2
ζ (3)

S =
3ζ (3)

2π
T 2− 4π2a

45
T 3− ζ (3)

16πa2
!!! violates Nernst theorem



Proposed solutions

Mostepanenko, Geyer: abandon Drude model.
Low frequency ⇒ wave-length long, field constant inside plate⇒
cannot exist, leads to charge separation

However: why to give up a successful description of materials,
when there are other ways to avoid the problem.
E.g. if resistivity does not simply go to 0 at T = 0, i.e.

ν(T → 0) 6= 0

Additional physical effects:
1. Spatial dispersion

ε(ω ,~k)

Only ε(0,0) would be infinite, but that is zero measure in ~k space.



Proposed solutions II

2. Anomalous skin effect: mean free path of electrons becomes
longer than field penetration depth near T = 0.
Again, no contribution from TE zero mode found.

3. Large separation: result for Casimir effect same as for large T ,
i.e. classical. It turns out TE modes do not contribute in this limit
and

F =−ζ (3)T

8πa3
a→ ∞

and this precisely agrees with the Drude prediction.

Future experiments will decide which scenario is valid (possibly
dependent on material).

Present experimental situation seems inconclusive to me.



Repulsive Casimir forces

One way: measure inside fluid,
suitably chosen dielectric constant
⇒ Lifshitz theory predicts repulsion.
J.N. Munday, F. Capasso, and V.A.
Parsegian:
Nature 457: 170–173, 2009.

Gold sphere - gold plate, in bromobenzene:
150 pN at 20 nm separation

Other way: coat surfaces of appropriate
(meta)materials
e.g. εleft = ∞ and µright = ∞

or negative refraction (cloaking)
(KK: only in limited freq. range!)

Analysis: K.A Milton et al, J. Phys. A45
374006, 2012. [arXiv:1202.6415]



Puzzle

What do you get if you lay an an invisibility cloak on the floor?

⇒

A flying carpet!
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Where has α gone?

QED effect: would expect appearance of fine structure constant,
but it is nowhere to be found...
Actual metals: frequency-dependent dielectric constant and
conductivity. Drude model:

σ(ω) = 0 ω2 > ω2
plasma =

4πe2n

m

For ω < ωplasma: penetration length (skin depth)

δ−2 =
2πω |σ |

c2
σ =

ne2

m(γ0 − iω)

Typically ω ≫ γ0 (damping)

δ ≈ c√
2ωplasma

Frequencies dominating Casimir effect: c/d ⇒ perfect conductor
approximation means

c

d
≪ ωplasma α ≫ mc

4π h̄nd2



Where has α gone? II

Typically: d < 0.5µm. Copper:

mc

4π h̄nd2
≈ 10−5 ≪ α ≈ 1

137

Casimir force is α → ∞ limit!!!
α → 0 limit:

aBohr =
h̄2

me2
∝

1

α

and so n ∝ α3 ⇒ ωplasma ∝ α2: for any fixed separation d ,
Casimir effect goes away.

Also δ → ∞: separation d becomes ill-defined.

For more details
cf. R.L. Jaffe: The Casimir effect and Quantum Vacuum,
hep-th/0503158.



Radiative corrections: Schwinger’s method

Schwinger’s approach: consider the vacuum persistence amplitude
in the presence of sources and boundaries

e iW [K ] = 〈0|e−iHT |0〉=
∫

DΦe i(S[Φ]+
∫

KΦ)

W [K ] =
1

2

∫

dxdx ′K (x)G (x ,x ′)K (x ′)

Effective field

φ(x) =
∫

dx ′G (x ,x ′)K (x ′)

K (x) =
∫

dx ′G−1(x ,x ′)φ(x ′)

Altering the geometry (e.g. moving boundaries adiabatically)

δW [K ] =
1

2

∫

dxdx ′K (x)δG (x ,x ′)K (x ′)

=−1

2

∫

dxdx ′φ(x)δG−1(x ,x ′)φ(x ′)



Casimir energy from response of Green’s function

Now

e iW [K ] = e
1

2
i
∫

dxK(x)φ(x) = · · ·− 1

2

∫

dxdx ′φ(x)K (x)K (x ′)φ(x ′)

i.e. changing boundaries is equivalent to a new two-particle source

[
iK (x)K (x ′)

]

eff
=−δG−1(x ,x ′)

δW =
i

2

∫

dxdx ′G (x ,x ′)δG−1(x ,x ′) =− i

2

∫

dxdx ′δG (x ,x ′)G−1(x ,x ′)

=− i

2

∫

dxdx ′δ logG (x ,x ′) =− i

2
δTr logG

so

E = lim
T→∞

i

2T
(Tr logG −TrlogGref )

where Gref is the value at some reference state (e.g. with bodies
infinite distance apart).



Radiative correction for electromagnetic field

Use perturbative form of G with Π as polarization

G = G0(1+ΠG0+ . . .)

Result for parallel plates

E =
E

A
=− π2

720a3
+

απ2

2560mea4
+O(α2)

This is suppressed by
αm−1

e

a

and is inobservable in practice

m−1
e = λCompton ≈ 2.43 ·10−12m

α ≈ 1

137



Outline

1 Introduction: QED and the Casimir effect

2 Realistic cases I: temperature and material dependence

3 Realistic cases II: geometry dependence
Proximity force approximation
The method of Green’s dyadic
Lateral Casimir force
Casimir force between compact bodies

4 Comments on Casimir force and zero-point energy

5 Time dependent boundaries

6 Gravitational aspects

7 Some related topics



Outline

1 Introduction: QED and the Casimir effect

2 Realistic cases I: temperature and material dependence

3 Realistic cases II: geometry dependence
Proximity force approximation
The method of Green’s dyadic
Lateral Casimir force
Casimir force between compact bodies

4 Comments on Casimir force and zero-point energy

5 Time dependent boundaries

6 Gravitational aspects

7 Some related topics



Novel measurement methods

Figure : Bell Labs

Torsion balance
(Capasso, Harvard)

Figure : Mohideen et al.

AFM (Atomic Force Microscope),
sensibility in principle can be 10−17 N
(reached: 10−13 N)
Si-plate: dielectric constant can be
modulated by laser
(U. Mohideen et al., UC Riverside)



Proximity force approximation; special geometries

Simplest way to account for geomery dependence:
Proximity Force Theorem
Sphere and plate, R ≫ d : every element of sphere is approximately
parallel to plate

V (d) =

∫ π

0
2πR sinθRdθ E (d+R(1− cosθ)) = 2πR

∫ R

−R
dxE (d +R− x)

F =−∂V

∂d
= 2πR

∫ R

−R
dx

dE (d+R− x)

dx

= 2πR (E (d)−E (d+2R))≈ 2πRE (d)

Lamoreaux: 5% → Mohideen & Roy: 1%→ Bell Labs 0.5%
Need to include: finite conductivity corrections, surface roughness.

Other calculations: sphere - plate, cylinder - plate, concentric
spheres, coaxial cylinders.
(K.A.Milton: The Casimir effect, World Scientific, 2001.)
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Green’s dyadic

Green’s dyadic: response of EM field to polarization

Ei (x) =

∫

d4x ′Γij(x ,x
′)Pj(x

′)

Hi (x) =

∫

d4x ′Φij(x ,x
′)Pj (x

′)

Static situation: frequency decomposition

Γij(x ,x
′) =

∫
dω

2π
e−iω(t−t ′)Γij(~x ,~x

′;ω)

Φij(x ,x
′) =

∫
dω

2π
e−iω(t−t ′)Φij(~x ,~x

′;ω)

Maxwell’s equations (ε0 = µ0 = 1)

rot~E =−∂ ~H

∂ t
⇒ εijk∂jΓkl = iωΦil

rot~H =
∂
(

~E + ~P
)

∂ t
⇒ − εijk∂jΦkl − iωΓil = iωδilδ (~x−~x ′)

div~H = 0 ⇒ ∂iΦij = 0



Solving for Green’s dyadic

Redefining Γ:

Γ′il = Γil +δilδ (~x −~x ′) ⇒ ∂iΓ
′
ij = 0

Taking the rotation of Maxwell’s equations, we get

(
∇2+ω2

)
Γ′ij =−(∂i∂j −δij∇

2)δ (~x−~x ′)
(
∇2+ω2

)
Φij = iωεikj∂kδ (~x −~x ′)

This has to be solved with boundary conditions:
e.g. for a conducting boundary, tangential electric field vanishes on
the surface

εijknjΓ
′
kl (~x ,~x

′;ω)
∣
∣
~x∈Σ = 0

Main advantage of method: explicit gauge invariance.



Computing the Casimir stress

The two-point functions of fields are
〈
Ei (x)Ej (x

′)
〉
=−iΓij(x ,x

′)
〈
Hi (x)Hj (x

′)
〉
= i

1

ω2
εikl∂kεjmn∂kΓmn(x ,x

′)

(from εikl∂kEl (x) = iωHi(x) )

and the Maxwell stress tensor is

Tij = EiEj −
1

2
δij~E

2 +HiHj −
1

2
δij ~H

2

⇒ Casimir stress on the surface.
E.g. for a perfectly conducting sphere of radius a

F = 〈Trr (r = a−0)〉− 〈Trr (r = a+0)〉= 1

4πa2

(

−∂E

∂a

)

and the self-energy from Casimir stress is (Boyer)

E =
0.092353

2a
(h̄ = 1 = c)
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Lateral force

PFA: averaging over surface roughness. Condition: λc ≫ zA, zero
lateral force.
F. Chen and U. Mohideen, Phys. Rev A66: 032113, 2002.



Use of Casimir force in micromachines

Standard worry: Casimir force would
make nanobots stick.

Idea: exploit Casimir force to produce
motion.

T. Emig: Casimir force driven
ratchets
Phys. Rev. Lett. 98:160801, 2007
[cond-mat/0701641]

With typical parameters 〈v〉 ∼ mm/s

A Casimir ratchet producing lateral
motion by vibrating separation

Other similar effect: Casimir torque (for asymmetric bodies)
Not yet observed!
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Arbitrary compact bodies

Emig, Graham, Jaffe & Kardar ’2007

Z [C ] = Tr e−
i
h̄
HC T =

∫

[DΦ]
C

e
i
h̄
S[Φ]

Φ(~x ,t+T ) = Φ(~x ,t)

and Φ|C = 0

Tr e−
1

h̄
HC Λ →

Λ→∞
e−

1

h̄
E0[C ]Λ+ . . .

⇒ E [C ] = lim
T→−i∞

h̄

|T | ln
Z [C ]

Z∞
=∑

n

h̄

2
(ωn−ωn,∞)

S S1 2

C =
⋃

α

Σα

Suppose C is time-independent: we can Fourier expand in time

∫

[DΦ]
C
→
∫

∏
n

[Dφn(~x)]C

Φ(x) = ∑
n

φn(~x)e
2πint/T



Fluctuating surface charges

So we get

logZ [C ] = ∑
n

log

{∫

[Dφn(~x)]C e
i T
h̄

∫
d~x
(

( 2πn
cT )

2|φn(~x)|2−|∇φn(~x)|2
)}

(T → ∞) =
cT

π

∫ ∞

0
dk logZC (k)

ZC (k) =

∫

[Dφ(~x ,k)]
C

e
i
h̄
T
∫

d3~x(k2|φ(~x ,k)|2−|∇φ(~x ,k)|2)

Now putting T =−iΛ/c , Wick rotating k = iκ

E [C ] =− h̄c

π

∫ ∞

0
dκ log

ZC (iκ)

Z∞(iκ)

ZC (iκ) =
∫

[Dφ(~x , iκ)]
C

e−
T
h̄

∫

d3~x(κ2|φ(~x ,iκ)|2+|∇φ(~x ,iκ)|2)

Implement Dirichlet BC with Lagrange multipliers:
∫

[Dφ(~x)]
C
=

∫

[Dφ(~x)]∏
α

∫

[Dρα(~x)Dρ∗
α (~x)]e

i T
h̄

∫

Σα
d3~x(ρα (~x)

∗φ(~x)+c.c.)

︸ ︷︷ ︸

functional Dirac delta

Interpretation of ρ : fluctuating surface charge on .



Performing the Φ integral

So

ZC (k) =
∫

[Dφ(~x ,k)]
C ∏

α

∫

[Dρα(~x)Dρ∗
α (~x)]e

i
h̄
TS̃(φ ,ρ)

S̃(φ ,ρ) =

∫

d3~x
(

k2 |φ(~x ,k)|2−|∇φ(~x ,k)|2
)

+

∫

Σα

d3~x (ρα(~x)
∗φ(~x ,k)+ c .c .)

Idea: integrate out Φ from quadratic functional integral → classical
solution + fluctuations.

(∇2+ k2)φcl (~x ,k) = 0 x /∈Σα

∆φcl(~x ,k) = 0 x ∈Σα

∆∂nφcl (~x ,k) = ρα(x) x ∈Σα



Integrating out fluctuations

φcl (~x) = ∑
β

∫

Σβ

d~x ′G0(~x ,~x
′,k)ρβ (~x

′)

G0(~x ,~x
′,k) =

e ik|~x−~x
′|

4π|~x −~x ′| = ik∑
lm

jl (kr<)h
(1)
l (kr>)Ylm(x̂

′)Ylm(x̂)
∗

Put now φ = φcl +δφ

ZC (k) = ∏
α

∫

[Dρα(~x)Dρ∗
α(~x)]e

i
h̄
TS̃cl (ρ)

×
∫

[Dδφ(~x ,k)]ei
T
h̄

∫

d3~x(k2 |δφ(~x ,k)|2−|∇δφ(~x ,k)|2)

︸ ︷︷ ︸

unconstrained fluctuations: cancel out with denominator

S̃cl(ρ) =

∫

Σα

d3~x (ρα(~x)
∗φ(~x ,k)+ c .c .)

Also note that φcl = ∑
β

φβ , where φβ is sourced by ρβ .



Interaction terms

φcl (~x) =∑
β

∫

Σβ

d~x ′
[

ik∑
lm

jl(kr<)h
(1)
l (kr>)Ylm(x̂

′)Ylm(x̂)
∗
]

ρβ (~x
′)

Interaction terms (α 6= β ): in terms of multipoles

Qβ ,lm =
∫

Σβ

d~xβ jl(krβ )Y
∗
lm(x̂β )ρβ (~xβ )

φβ (~xβ ) = ik∑
lm

Qβ ,lmh
(1)
l (krβ )Ylm(x̂β )

φβ (~xα) = ik∑
lm

Qβ ,lm ∑
l ′m′

U
αβ
lm,l ′m′h

(1)
l ′ (krα)Yl ′m′(x̂α)

U
αβ
lm,l ′,m′ : translation coefficients, depending on Σα and Σβ

S̃αβ (ρ) =

∫

Σα

d3~x
(
ρα(~x)

∗φβ (~x ,k)+ c .c .
)

=
1

2
ik∑

lm
∑
l ′m′

(

Q∗
α ,l ′m′U

αβ
l ′m′,lmQβ ,lm+ c .c

)



Self-interaction terms

S̃αα(ρ) =
1

2

∫

Σα

d3~x (ρα(~x)
∗φα(~x ,k)+ c .c .)

Field inside Σα is regular Helmholtz solution, outside general

φin,α (~x) = ∑
lm

φα ,lmjl(kr)Ylm(x̂) φout,α (~x) = φin,α (~x)+∆φα(~x)

∆φα(~x) = ∑
lm

χα ,lm

(

jl(kr)Ylm(x̂)+ ∑
l ′m′

T
α
l ′m′lm(k)h

(1)
l ′ (kr)Yl ′m′(kr)

)

where T α
l ′m′lm(k) is from ∆φα(~x)|Σα

= 0. But the out field is
regular at infinity ⇒ χα ,lm =−φα ,lm. So

φout,α (~x) =−∑
lm

φα ,lm ∑
l ′m′

T
α
l ′m′lm(k)h

(1)
l ′ (kr)Yl ′m′(kr)

but it is also =

∫

Σα

d~x ′G0(~x ,~x
′)ρα(~x

′) = ik ∑
l ′m′

Qα ,l ′m′h
(1)
l ′ (kr)Yl ′m′(x̂)

so that ikQα ,l ′m′ =∑
lm

φα ,lmT
α
l ′m′lm(k)

φα ,lm =−ik ∑
l ′m′

[T α(k)]−1
l ′m′lmQα ,l ′m′



Integrating over charge fluctuations

The final form for the self-interaction is

S̃αα(ρ) =− ik

2 ∑
l ′m′

Qα ,lm [T α(k)]−1
l ′m′lmQα ,l ′m′ + c .c .

and we are left with the functional integral

ZC (k) = ∏
α

∫

[Dρα(~x)Dρ∗
α(~x)]

exp

{

k

2 ∑
α

∑
lm,l ′m′

Q∗
α ,lm

(
T
−1
α

)

lm,l ′m′ Qα ,l ′m′

− k

2 ∑
α 6=β

∑
lm,l ′m′

Q∗
α ,lm

(
Uαβ

)

lm,l ′m′ Qα ,l ′m′ − c .c .

}

= Jacobian× ∏
α ,l .m

{∫

dQα ,lm

∫

dQ∗
α ,lm

}

exp{. . .}

Jacobian is independent of functional integration variables (Q−ρ
relation linear) and drops out with denominator.



Casimir force: averaged interaction between fluctuating

charges

The end result is:

EC =− h̄c

π

∫ ∞

0
dκ ln

detMC (iκ)

detM∞(iκ)

M(k) =








T
−1

1
U12 · · · U1N

U21 T
−1

2
· · · U2N

...
...

. . .
...

UN1 UN2 · · · T
−1

N








M∞(k) =








T
−1

1
0 · · · 0

0 T
−1

2
· · · 0

...
...

. . .
...

0 0 · · · T
−1

N








For two bodies:

E12(C ) =− h̄c

π

∫ ∞

0
dκTrln

(
1−T

1
U

12
T

2
U

21
)

Note: this is entirely finite, convergent and physically meaningful.



General formula for planar situations

In one space dimension it is easy to derive the Casimir interaction
with other methods:

E12(L) =− h̄c

π

∫ ∞

0
dκ log

[

1− e−2κLR1(iκ)R2(iκ)
]

where R1,2(ω) is the reflection coefficient of the mode ω on the
boundaries and

e−2κL = e2iωL = e2i |k|L , ω = |k |
So here:

T
1 = R1(ω) T

2 = eiωLR2(ω)

U
12 = U

21 = e2iωL

which looks really sensible.
This also extends to planar situations

E12(L)=− h̄c

π

∫ ∞

0
dκ
∫

d~k⊥ log

[

1− e
−2L

√

κ2+~k2

⊥+m2

R1(iκ ,~k⊥)R2(iκ ,~k⊥)

]

(Bajnok, Palla & Takács, hep-th/0506089).
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Does the Casimir force originate from zero-point energy?

Mystery: a naive consideration of zero modes leads to a huge
vacuum energy density.
Quantum field

Φ(~x ,t) =

∫
dd~k

(2π)d/2
1

√

2ω(~k)

(

a(~k)e−iω(~k)t+i~k ·~x + a†(~k)e+iω(~k)t−i~k ·~x
)

H =

∫

dd~xT00 =

∫

dd~x
1

2
(∂tΦ)

2+
1

2

(
~∇Φ
)2

=
∫

dd~k

(2π)d
ω(~k)

1

2

[

a†(~k)a(~k)+ a(~k)a†(~k)
]

=

∫
dd~k

(2π)d
ω(~k)a†(~k)a(~k)+

∫
dd~k

(2π)d
1

2
ω(~k)δ (0)

With δ (0) = (2π)dV , d = 3 and a high energy cutoff Λ we get an
energy density

E0

V
=
∫ Λ

0
k2dk

1

2
k ∝ Λ4



The naive vacuum energy density and the QFT Hamiltonian

QFT (Standard Model) valid at least up to Λ∼ 1 TeV: E0

V
∼ 1047 J

m3

If Λ =MPlanck ∼ 1019 GeV : E0

V
∼ 10110 J

m3

How comes the Casimir force is such a small effect?
Crucial observation: quantum Hamiltonian is not uniquely
fixed!
E.g.: why is the standard mass point Hamiltonian

Ĥ =
p̂2

2M
+V (q̂)

Explanation: this comes from correspondence principle

d

dt
Ô =

i

h̄
[Ĥ ,Ô ] [q̂, p̂] = i h̄

d

dt
q̂ =

p̂

M

d

dt
p̂ =−V ′(q̂)

h̄→ 0: q̂,p̂ commute ⇒ simultaneously diagonalizable ⇒
eigenvalues obey classical equations of motion.



The naive vacuum energy density and the QFT Hamiltonian

A perfectly good Hamiltonian for QFT is given by

H =

∫

dd~xT00 =

∫

dd~x :
1

2
(∂tΦ)

2+
1

2

(

~∇Φ
)2

:

=

∫
dd~k

(2π)d
ω(~k)

1

2
: a†(~k)a(~k)+ a(~k)a†(~k) :=

∫
dd~k

(2π)d
ω(~k)a†(~k)a(~k)

Moral: QFT does not predict vacuum energy density! Some other
interaction is needed ⇒ gravity.
Einstein’s “greatest mistake” :

Rµν −
1

2
gµνR+λgµν =

8πG

c4
Tµν

T
(λ)ν
µ =− c4λ

8πG
g ν

µ = E g ν
µ

Cosmological constant: p =−E . Present concordance cosmology
(ΛCDM):

E ∼ 5.4×10−10 J

m3
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Why does the zero-point energy derivation work?

Energy of a point charge

E =
e

4πε0r2
⇒ E =

1

2
ε0
~E 2 =

e2

32π2ε0r4

Field energy:

∫ ∞

r0

4πr2
E dr =

e2

8πε0r0

r0 = 0: divergent! Renormalization:

mphysc
2 =m0c

2+
e2

8πε0r0

mphys: physical mass: the only observable.



Radius of the electron

Physical mass

mphysc
2 =m0c

2+
e2

8πε0r0

m0 = 0: classical electron radius

r0 ∼ 10−15m

Present experiments: r0 < 10−18m

QED self-energy:

m0c
2 = mphysc

2

(

1− 3α

4π
log

(

λ 2
Compton

r2
0

+
1

2

)

+O(α2)

)

λCompton = 2.4263102175(33)×10−12m

r0 ∼ 10−18m : 5% correction.
Theoretical limit: m0 > 0 → r0 > 10−136m



Two point charges

Figure : Two point charges with distance d

~E = ~E1 + ~E2 → E = 1
2
ε0
~E 2

E(d) =
∫

d3~xE still divergent for r0 = 0

but: E(d1)−E(d2) =
e1e2

4πε0

(
1

d1

− 1

d2

)

finite!

Interaction energy: Eint(d) =
e1e2

4πε0d

This works because

WLorentz =−
∫

d3~x∆E
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Casimir effect and and van der Waals interaction

van der Waals force = interaction between fluctuating dipols

Hint =
~d1 ·~d2r

2−3(~d1 ·~r)(~d2 ·~r)
r5

Veff = ∑
m 6=0

〈0|Hint |m〉〈m|Hint |0〉
E0−Em

∝ r−6

Original problem investigated by Casimir &
Polder: retardation effects on vdW force

Dielectric ball: Casimir self-stress ≡ vdW
forces

Casimir effect = relativistic vdW
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Moving boundary

Plates: K : x3 = 0 and K ′ : x3 = vt.
Solve for Dirichlet Green’s function (scalar field):

(
∂ 2
t −∇2

)
G (x ,x ′) =−δ (x− x ′)

G (x ,x ′) = 0 x ,x ′ ∈ K or K ′

Energy density

〈0|T00(x)|0〉 =
1

2

3

∑
k=0

〈0|∂kΦ(x)∂kΦ(x)|0〉 =
i

2
lim
x ′→x

3

∑
k=0

∂k∂ ′
kG (x ,x ′)

Solution in x3 < 0: using method of images

G>(x ,x ′) =
i

4π2

[
1

(x− x ′)2
− 1

(x−SKx ′)2

]

SK =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









Moving boundary II

Solution for x3 > vt: use Lorentz transform to get into system of
K ′, find image, transform back.

G>(x ,x ′) =
i

4π2

[
1

(x− x ′)2
− 1

(x−SK ′x ′)2

]

SK ′ =







coshs 0 0 −sinh s
0 1 0 0
0 0 1 0

sinh s 0 0 −coshs







s = log
c− v

c+ c

Solution in between: infinitely many images

G in(x ,x ′) =
i

4π2

∞

∑
m=−∞

(−1)m
1

(x− x ′m)2

x ′2m = (SKSK ′)mx ′ x ′2m−1 = SK (SKSK ′)mx ′

x ′−2m = (SK ′SK )
mx ′ x ′−2m−1 = SK (SK ′SK )

mx ′



Moving boundary III

Renormalization: eliminate vacuum contribution, which is the term

G0 =
i

4π2(x− x ′)2

in all three domains.
Force per unit area:

F (a(t)) =− d

d(vt)

∫ ∞

−∞
dx3〈0|T00(x)|0〉 a(t) = vt

=− π2

480a(t)4

[

1+
8

3

(v

c

)2

+O

(
v4

c4

)]

Electromagnetic case:

F (a(t)) =− π2

240a(t)4

[

1+

(
10

π2
− 2

3

)(v

c

)2

+O

(
v4

c4

)]

v ≪ c

=− 3

8π2a(t)4

[

1+
(c2− v2)2

16c4
+O

(
(c2 − v2)4

c8

)]

v ≪ c



Outline

1 Introduction: QED and the Casimir effect

2 Realistic cases I: temperature and material dependence

3 Realistic cases II: geometry dependence

4 Comments on Casimir force and zero-point energy

5 Time dependent boundaries
Velocity dependence of Casimir force
Dynamical Casimir effect: particle creation

6 Gravitational aspects

7 Some related topics



Dynamical Casimir effect

Scalar field in 2d
∂ 2
t Φ− c2∂ 2

xΦ= 0

Take an interval (0,a(t)), where a(t) = a0 for t < 0. The field is

Φ(t,x) = ∑
n

(

χ
(−)
n (t,x)an+ χ

(+)
n (t,x)a†

n

)

χ
(±)
n (t ≤ 0,x) =

1√
πn

e±iωnt sin
πnx

a0
ωn =

cπn

a0

χ
(−)
n (t > 0,x) =

1√
πn ∑

k

Qnk(t)

√
a0

a(t)
sin

πkx

a(t)

χ
(+)
n (t > 0,x) =

(

χ
(−)
n (t > 0,x)

)∗

Initial conditions

Qnk(0) = δnk Q ′
nk(0) =−iωnδnk



Equation of motion

Field equation gives

Q ′′
nk(t)+ω2

k (t)Qnk(t)

= ∑
j

hkj

[

2ν(t)Q ′
nj (t)+ν ′(t)Qnj (t)−ν(t)2∑

l

hjlQnl(t)

]

ωk(t) =
cπk

a(t)
ν(t) =

a′(t)
a(t)

hkj =−hjk = (−1)k−j 2kj

j2 − k2
j 6= k

Suppose that a(T ) = a0 after some time T ⇒

t > T : Qnk(t) = αnke
−iωkt +βnke

iωk t

Φ(t,x) = ∑
n

(

φ
(−)
n (t,x)bn+φ

(+)
n (t,x)b†

n

)

φ
(±)
n (t,x) =

1√
πn

e±iωnt sin
πnx

a0
ωn =

cπn

a0



Bogolyubov transform

bk = ∑
n

√

k

n

(
αnkan+β ∗

nka
†
n

)

Unitarity: ∑
k

k
(

|αnk |2−|βnk |2
)

= n

In- and out-vacuum:

ak |0〉in = 0 bk |0〉out = 0

Number of created particles:

nk = in〈0|b†
kbk |0〉in = k

∞

∑
n=1

1

n
|βnk |2

N =
∞

∑
k=1

nk

Enhancing effect: parametric resonance. E.g.

a(t) = a0 [1+ ε sin(2ω1t)]

ω1 =
cπ

a0



Particle creation

Solution is long, but result is that only odd modes are populated
and

n1(t)≈ τ2 τ ≪ 1

n1(t)≈
4

π2
τ τ ≫ 1 τ = εω1τ

E (t) = ω1∑
k

knk(t) =
1

4
ω2

1 sinh2(2τ)

Typical values for photons in cm cavity ω1 ∼ 60GHz
maximum endurance for wall materials εmax ∼ 3×10−8

dn1

dt
≈ 4

π2
εmaxω1 ∼ 700 s−1

Total number created is typically thousands of photons per second.
Effects to take into account: finite wall reflectivity, detector
interaction.
Nonzero temperature: factor ∼ 103 at room temperature.



Experiments

C.M. Wilson et al., 2011
Nature 479: 376-379
Microwave line: 100µm
“Mirror motion”: ∼ nm

MIR (Motion Induced Radiation, Padova) :(

Microwave line modulated by a SQUID: success!
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Energy density

Scalar field, Dirichlet plates: Green’s function of a given mode

gint(z ,z
′) =− 1

λ sinλa
sinλz< sinλ (z>− a)

⇓ λ 2 = ω2− k2

〈T00〉=
1

2

[
(∂tΦ)

2+(∇Φ)2
]
=
∫

dωd2k

(2π)3
〈t00〉

〈t00〉=
1

2i

(
ω2+ k2+∂z∂z ′

)
gint(z ,z

′)|z=z ′

=− 1

2iλ sinλa

[
ω2 cosλa− k2 cosλ (2z− a)

]

Wick rotate ω → iζ , λ → iκ and use polar coordinates ζ = κ cosθ ,
k = κ sinθ :

〈T00〉=− 1

4π2

∫ ∞

0
κdκ

∫ π/2

0
dθκ2 sinθ

sinhκa

[

cos2 θ coshκa

+ sin2 θ coshκ(2z− a)

]



Energy density II

〈T00〉=− 1

6π2

∫ ∞

0
dκκ3

(

1

e2κa−1
+

1

2
+

e2κz + e2κ(a−z)

e2κa−1

)

The second term is the vacuum constant, to be discarded. The
result is

〈T00〉= u+g(z)

u =− π2

1440a4

g(z) =− 1

6π2

1

16a4

∫ ∞

0
dyy3 e

yz + ey(1−z/a)

ey −1

=− 1

16π2a4
[ζ (4,z/a)+ζ (4,1− z/a)]

ζ (s,z) =
∞

∑
n=0

1

(n+ a)s
Hurwitz zeta



Energy density III

g(z) diverges at z = 0,a. Fortunately

∫ a

0
dz
[

e2κz + e2κ(a−z)
]

==
1

κ

[
e2κa−1

]

so, although its integral is divergent,
it is also a-independent and does not
contribute to the force.

0.0 0.2 0.4 0.6 0.8 1 .0

0

5

1 0

1 5

z �a

lo
g
H-

g
Hz
LL

Similar calculation gives Txx , Tyy , Tzz

〈T µν〉= u







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3







+g(z)







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0









Energy-momentum tensor

The energy-momentum tensor is not unique: instead of canonical
we may use the conformal one

T̃ µν = T µν − 1

6

(
∂ µ∂ ν −g µν∂ 2

)
Φ2

for which
T̃

µ
µ = 0

Then

〈T µν〉= u







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3







u =− π2

1440a4

Casimir pressure and energy density

p =−3u

e = u
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Equivalence principle

Binding energy: mass defect
Chemical bonds: ∆m/m = 10−9

⇓
The equivalence principle is valid
for EM energy with at least 10−3

precision!



How does Casimir energy fall?

Between parallel plates

〈T µν〉= u







1
−1

−1
3







θ(z)θ(a− z)

u =− π2h̄c

1440a4

z= z=0 a

Remarks:
1. Volume divergence („ZPE”) trivially eliminated.

u0 =
h̄

2

∫
d3~k

(2π)3
c

∣
∣
∣~k
∣
∣
∣

2. Surface divergence ∝ z−4⇒ renormalizing mass of plates.



Equivalence principle holds!

Gravitation energy in weak field limit:

Eg =−
∫

d3~x hµν(~x)T
µν(~x)

Problem: Eg is not gauge invariant!

hµν → hµν +∂µξν +∂νξµ : ∆Eg = 2

∫

d3~xξµ∂νT
µν

Why? ∂νT
µν 6= 0: there is a force on the plates!

Solution: Use locally inertial coordinates (K.A. Milton et al.):
Fermi coordinates: gij quadratic in distance from origin. Locally

h00 =−gz h0i = hij = 0

Eg = gz0uAa+ const= gz0ECasimir+ const

which is just right!
A full analysis: K.A. Milton et al: How does Casimir energy fall?

IV, arXiv:1401.0784
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Compact extra dimensions

Compact extra dimensions: Kaluza-Klein theory, later resurrected
by string theory.

Space-time: M =M4×K

〈T µν〉=−u(a)g µν =− Λ

8πG
g µν



Case of a sphere: K = S
N

Casimir energy of free massless scalar, for odd N

u(a) =− 1

64π2a4
Re

∫ ∞

0
dy [y2− i(N−1)y2]D(iy)

2π

e2πy −1

Dl =
(2l +N−1)(l +N−2)!

(N−1)!l !

N = 1 : u(a) =− 3ζ (5)

64π6a4
≈−5×10−5

a4

For even N u(a) is logarithmically divergent; cutoff is necessary:

u(a) =
1

a4

[

αN log
a

b
+ const

]

αN =
1

16π2
Im
∫ ∞

0

dt

e2πt −1
[(N−1)it− t2]2D(it)

b: frequency cut-off, presumably Planck scale. For large extra
dimensions a/b ∼ 1016: logarithmic term sufficient for estimate.



Estimate for size of extra dimensions

Cosmological constant (ΛCDM concordance cosmology)

Λ∼ ρc ∼ 10−5 GeV

cm3

Maximum value for coefficient

u(a)∼ 10−3

a4

Restoring units using h̄c = 2×10−14GeV cm we find

a4 ∼ 102 cm3

GeV
h̄c ∼ 10−12cm4

a ∼ 10 µm

Such a compact dimension would lead to non-Newtonian gravity on
a submm scale.
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Non-Newtonian gravity experiments

E.g. searching for a correction of the form

V (r) = α
e−r/λ

r

Presently: extra dimensions with size around 100 µm are ruled out.
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Vacuum birefringence

Leffective =
1

2

(

~E 2− ~B2
)

+
ξ

2

((

~E 2− ~B2
)2

+7
(

~E · ~B
)2
)

ξ =
h̄e4

45πm4c7
∆n ∼ 4×10−24(Bext/1Tesla)2

PVLAS (Polarizzazione del Vuoto con LASer, INFN, Padova)
G. Zavattini et al, QFEXT11, arXiv:1201.2309

Factor of 104 needed to reach sensitivity to QED: no signal yet!
→ can still look for axion signal
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Axions

L =
1

2
∂µa∂ µa− 1

2
m2

aa
2+

1

2

(

ε~E 2− ~B2
)

−gaa~E · ~B

Axions induce vacuum birefringence

PVLAS had a signal, turned out to be detector effect on reanalysis

(2008 exclusion plot)



Shining light through walls

It is possible to shine light through walls using e.g. axions.

Standard modell contributions

Graviton conversion very weak:

Neutrino conversion is even weaker:

P(γ → g → γ)∼ 10−83
(

B

1T

)4 (
L

1m
)4



Shining light through walls: beyond the standard model

(a) Axions (b) Hidden sector γ (c) Hidden γ enhanced by MCP
(MCP: milli-charged particles)

ALP experiment (DESY), using HERA magnet
So far no signal...

J. Redondo and A. Ringwald: Light shining through walls,
arXiv:1011.3741.



Outline

1 Introduction: QED and the Casimir effect

2 Realistic cases I: temperature and material dependence

3 Realistic cases II: geometry dependence

4 Comments on Casimir force and zero-point energy

5 Time dependent boundaries

6 Gravitational aspects

7 Some related topics
Vacuum birefringence
Axions
Sonoluminescence



Sonoluminescence

Collapsing bubble emits flash of light
a ∼ 10−3 cm, overpressure ∼ 1 atm,
f ∼ 104 Hz, Etot ∼ 10 MeV

Schwinger: divergent bulk contribution

Ebulk =
4πa3

3

∫
d3~k

(2π)3
1

2
k

(

1− 1

n

)

Schwinger estimate (adiabatic approximation):

Ebulk ∼
a3K 4

12π

(

1− 1√
ε

)

Putting in a ∼ 4×10−3 cm, cutoff K ∼ 2×105 cm−1 (UV),√
ε ∼ 4/3:

Ec ∼ 13 MeV



Casimir calculations

Casimir energy for dielectric sphere (renormalized by bulk
subtraction, equal to vdW!)

E =
23

1536πa
(ε −1)2 (|ε −1| ≪ 1)

Experiment: ai ∼ 4×10−3 cm to af ∼ 4×10−4 cm

∆E ∼−10−4 eV

Dynamical Casimir effect? Radiated energy spectrum: T ∼ 104 K.
Simple estimate using results from Unruh effect:

Unruh temperature: T =
h̄A

2πc
Acceleration: A∼ a

τ2

we get τ ∼ 10−15 s which is way too short!
Experiment: collapse time scale 10−4 s, emission 10−11 s.
Best present explanation: towards end of bubble collapse
T ∼ 104 K, ionized noble gas radiates.

K.A. Milton, arXiv:hep-th/0009173
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