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Classical gravitation, electromagnetism, charge, and mass are described 
in a preceding article in terms of curved empty space and nothing more. In 
advance of the detailed quantization of this pure Einstein-Maxwell geo- 
metrodynamics, an attempt is made here (1) to bring to light some of the most 
important properties to be expected for quantized geometrodynamics and 
(2) to assess whether this theory, without addition of any inventive elements, 
can contribute anything to the understanding of the elementary particle 
problem. Gravitational field fluctuations are concluded to have qualitatively 
new consequences at distances of thz order of (hG/c3)‘/2 = 1.6 X lo-33 cm. They 
lead one to expect the virtual creation and annihilation throughout all space 
of pairs with electric charges of the order it’d and energies of the order 
(hc5/G)l/2 = (2.18 X lo+ g)c2 = 2.4 X 10z2 mc2. 

The problem is discussed, to what extent these charges can be identified 
with the unrenormalized or “undressed” charges of electron theory. Decisive 
for the future usefulness of quantum geometroydnamics is the question whether 
spin shows itself as an inevitable geometrical concomitant of quantization, 
or whether it and other ideas have to superposed on this purely geometrical 
description of nature. 

Classical gravitation, electromagnetism, charge, and mass can be described in 
terms of the Rainich specialization of the Riemannian geometry of a curved 
empty space, and nothing more, according to an accompanying a.rticle (1). In 
this description we add nothing to the generally accepted equations of Maxwell 
and Einstein. We only recall that those equations, as first shown by Rainich, 
can be put into an “already unified form” where nothing but geometrical quan- 
tities make an appearance. We also abandon the tacit assumption made hitherto 
that space is simply connected, an assumption for which the Einstein-Maxwell 
equations themselves give no foundation. Then classical charge appears as the 
flux of lines of force trapped in a multiply connected metric. In this way we 
arrive at a description of classical physics which is extraordinarily far reaching. 
It is nevertheless purely geometrical and based throughout on the most firmly 
established principles of electromagnetism and general relativity. No changes 
are made in those principles nor are any free inventive elements added. 

The charge and mass which appear in this analysis obey the inequality 

m 2 G-“‘q = (3.9 X lo3 g/esu)q, 
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are unquantized, and have no direct relation whatsoever to the quantized charge 
and mass of elementary particles. 

What then is the relation between geometrodynamics and the world of par- 
ticle physics? 

To attempt to answer this question it would be conceivable to add to pure 
geometrodynamics electron fields, meson fields, neutrino fields, and other kinds 
of fields. One would then run into all the familiar difficulties of field theory and 
would be forced in addition to bring in coupling constants and characteristic 
mass values as primitive unexplained elements in physical theory. In this way 
one would have lost the features that distinguish geometrodynamics as a de- 
scription of nat,ure at the classical level-features that may be stated briefly as 
follows: (1) Space time is not an arena for physics, it is al2 of classical physics. (2) 
There are no “constants of nature” to be explained-neither c nor G. The velocity 
of light is only a factor of conversion between two historical units of distance, 
the light set and the cm, just as 5280 is the factor of conversion between miles 
and feet. Similarly, the inertial properties of mass are expressed by a purely 
geometrical quantity, the Schwarzschild radius, which may be measured either 
in cm or an older unit, endowed like the mile with a name of its own, the gram. 
From the standpoint of general relativity the ratio between the two units of 
length, G/c2 = 0.74 X lo-** cm/g, is as accidental and historical in its origin as 
the number 5280. Lengths alone enter classical geometrodynamics. (3) There are 
no “coupling constants” and there are no independently existing fields to be 
coupled with each other. The electromagnetic field is not a new object; it is a 
construct from first derivatives of the Ricci curvature. 

Shall it be claimed that these distinctive features of geometrodynamics ought 
to be abandoned? Is there anyone who knows enough about physics to say that 
the pattern established by Maxwell and Einstein is the wrong pattern for the 
description of nature? How can one demand that quantized fields and coupling 
constants must be added when no one has traced out the consequence of quan- 
tizing pure Einstein-Maxwell geometrodynamics as it stands? Let these ques- 
tions motivate a close look at quantum geometrodynamics! 

The passage from classical theory to quantum theory is direct, according to 
Feynman. The expression 

(C2a2 ! Cm) = S exp (iI&) (2) Ii 
gives the key quantity needed to evaluate all physically meaningful magnitudes: 
the probability amplitude to transit from a configuration C1 on the space like 
surface ql to CZ on (T) . Here H is any history of the system between ~1 and u2 
that has as boundary values the configuration Cl and C2 . The quantity Ia is the 
classical action associated with that history. The symbol S denotes a summation 

H 
over all histories, classically allowed or not, with equal weighting for each, and 
with such a normalization that the propagator (2) is unitary. 
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To say that all of quantum geometrodynamics is contained in principle in the 
prescription (2), is not the same as translating this prescription into practice! 
On this substantial task Misner has made a decisive beginning (2).’ Before a 
proper treatment is completed one can make order of magnitude estimates along 
lines familiar from quantum electrodynamics: The phase in the Feynman- 
Huygens exponent can be written qualitatively in the form 

1,/h - / [(c3/8?rhG)(ag/ax>” + (1/8~hc)(aA/~x)21(-g)1’2 d4x. (3) 

Consider the change in this integral due to alterations Ag in a typical compo- 
nent, g,,y , of the metric, and A.4 in a typical component, A, , of the electromag- 

netic potential, over a space-cotime region with dimensions of the order 
LXLXLXL: 

A(phase) = A1/fi - (c3/fiG)L2(Ag)’ + (l/fic)L’(AA)‘. (4) 

We conclude that field variations over such regions contribute to the sum over 
histories without significant destructive interference (A(phase) - 1 radian) only 
when they are of the following order of magnitude or less (Table I). One arrives 

TABLE I 

ORDER OF MAGNITUDE OF FIELD FLUCTUATIONS. HERE L* IS AN ABBREVIATION FOR THE 

QUANTITY (hG/c3)1/* = 1.6 X lo+3 cm. 

Electromagnetic Gravitational 

Potential 
Field 
Space curvature 

AA - @c)“~/L 

AF N (h~)“~/Lz 
. . . 

Ag - L*/L 

A (acceleration) N czL*/Lz 
AR - La/L” 

at the same estimates by considering a quantum of energy confined to a region 
of the order L. The energy is of the order fix/L, the energy density of the order 
fic/L4, and thus the fields of the order (fi~)“~/L~, with or without appropriate 
dimensional factors for transformation into familiar units. 

Both the fluctuations in the metric and the static alterations in the metric are 
fantastically small at atomic distances and even at the characteristic localization 
distance, L, = fi/mc, from an electron: 

Agstatia - 2Gm/c2L, - (L*/L,,J2 - 10-44, 

Agfluot - L*/L - 10-22. 
(5) 

1 See Everett (8) for the method of application of the quantum principle to a system 
like that of geometrodynamics, which is self contained, not subject to external observa- 
tion. 
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Moreover, the static field does not increase by orders of magnitude as one goes 
to orders of magnitude smaller distances, due to the lack of localizability of the 
energy and mass of an electron. In contrast, the calculated fluctuations in the 
metric are unaffected by proximity to a particle and, like electromagnetic field 
fluctuations, have only to do with the scale of the region of observation. On an 
atomic scale the metric appears flat, as does the ocean to an aviator far above. 
The closer the approach, the greater the degree of irregularity. Finally, at dis- 
tances of the order L*, the fluctuations in the typical metric component, grv , 
become of the same order as the grr themselves. Then the character of the space 
undergoes an essential change, as indicated schematically by Fig. 1. Multiple 
connectedness develops, as it does on the surface of an ocean where waves are 
breaking. Of course it is not necessary to propose a method to observe these 
fluctuations in order to note how directly and inescapably they follow from the 
quantum theory of the metric. One does not have to use the word “observation” 
at all. One can say simply: (1) the propagator is expressed as a sum over his- 

Q b C 

FIG. 1. Effect of a local fluctuation in the metric in introducing a multiple connected- 
ness. In (c) the upper region of space is not disconnected from the lower one, as might 
appear from a single cross section of the space; hence the dotted lines to symbolize the 
connection between the two regions that would appear if the cut were made in another place. 

tories (2) a history is a sequence of configurations, and (3) the type of configura- 
tion symbolized by Fig. 1 contributes importantly to the sum over histories. 
The word “fluctuation” is then only a shorthand language to speak about the 
configurations that contribute most to the sum over histories. 

Along with the fluctuations in the metric there occur fluctuations in the elec- 
tromagnetic field. In consequence the typical multiply connected space, such as 
that in Fig. l(c), has a net flux of electric lines of force passing through the 
“wormhole”. These lines are trapped by the topology of the space. These lines 
give the appearance of a positive charge at one end of the wormhole and a nega- 
tive charge at the other. 

For an estimate of the typical charge associated with a wormhole, denote the 
size scale of the wormhole by L. Then the area over which the flux passes is of 
the order L”. The fluctuation fi$d is of the order (fic)““/L”. Consequently the 
integrated flux and the charge are of the order 

qfhct - (fi~)~‘~ - 12e. (6) 

independent of the size of the wormhole. 
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FIG. 2. Slice at a constant time through a field history of the kind that will contribute 
heavily to the sum over histories in the Feynman propagator. The small circles indicate 
wormhole mouths associated with the multiple connectedness of the space. The typical 
wormhole is connected with a fluctuation like that illustrated in Fig. 1, and has dimensions 
of the order (hG/~3)l’~ = 1.6 X 1O-33 cm, far smaller than any dimension with any direct 
relevance to the elementary particle problem, h/me = 3.9 X IO-” cm. Associated with a 
typical wormhole such as a is not only a great curvature of space, but also a fluctuation 
electromagnetic field, as indicated by the lines of force in the enlarged view of a at the 
right. 

The existence of such a pair of charges is forced on one by the most elementary 
considerations of quantum theory and Maxwell-Einstein geometrodynamics. 
However, such a charge has no direct relation whatsoever to the charge of an 
elementary particle. (1) The typical charge is one order of magnitude greater 
than the elementary quantum of charge. (2) This charge is not quantized. On the 
contrary, configurations have to be taken into account in the sum over histories 
for which this charge has all values. However, contributions to this sum cancel 
out by destructive interference when the charge exceeds in order of magnitude 
the qfiuct of Eq. (6). (3) Th e mass of the electromagnetic field associated with 
one such wormhole of typical dimension L - L* is of the order 

c-% - c-'(AFj2L3 - fi/cL - (fi~/G)"~ = 2.2 X 1O-5 g, (7) 

completely incompatible with the masses of elementary particles. (4) Most im- 
portant of all, these fluctuation charges are not a property of particles, they are 
a property of all space.2 

Figure 2 gives a symbolic representation of the typical configuration that con- 
tributes heavily to the sum over histories. In this configuration, wormhole 
mouths occur everywhere, with typical spacings and typical dimensions of the 
order of the characteristic length L*. The enlargement of one wormhole at the 

2 The structure discussed here and previously (4) is to be contrasted with the “Swiss- 
cheese structure” described by Belinfante (6), which is due solely to preexisting “real 
masses” such as are not envisaged here. 



QUANTUM GEOMETRODYNAMICS 609 

right shows lines of force issuing from it, such as likewise emerge from or con- 
verge onto every other typical wormhole mouth. This situation is appropriately 
described in the following words: (1) Quantization of the physics of Maxwell and 
Einstein forces on space a foam-like structure. Space has not only a macrocurva- 
ture on the scale of the universe, but also a microcurvature on the scale L*. (2) 
In the vacuum, virtual pairs of charges are being continually created and an- 
nihilated. (3) With these pairs are associated charges and especially electromag- 
netic masses far larger than anyt’hing familiar from the elementary particle 
problem. 

The energy density of the vacuum as just described appears at first sight to 
be completely unreasonable. Multiplying the mass-energy per typical wormhole, 
fi/cL*, by a number of virtual pairs per unit volume of the order 1/L*3, one comes 
to a mass density so great, 

p - fi/~L*~ = c’/fiG’ = (2.2 X lop5 g)/(1.6 X 1O-33 cm)” = 5 X log3 g/cm3, (8) 

that even a Compton wavelength includes more than the total estimated mass 
of the universe: 

Ph&3 = 5.0 x log3 (3.87 x 1o-“)3 = 2.9 x 1o62 g; 

Muniverse - c’R univ/‘G - (1.35 X lo*’ g/cm) (9) 

(0.94 X lOI cm/yr) 5 X 10’ yr - 6 X 1O55 g. 

This difficulty is not a new one. It is the problem of the zero point energy of the 
electromagnetic field. Let one sum the energy of the typical field oscillator, 
ML, over all frequencies down to a wavelength, c/w - L*, where the micro- 
curvature of space completely alters the character of the field oscillators. Then 
one obtains the mass-energy of (8). It is customary to try, not to solve this 
problem, but to side step it. One subtracts off the zero point energy. This pro- 
cedure is legitimate in special relativity. However, in general relativity there is 
no disposable additive constant of energy and this procedure is not justified. 
Moreover, the subtracted term is not a constant, but depends upon the curvature 
of space. 

We have neglected up to now any gravitational contribution to the density 
of energy and mass. However, the electromagnetic fields in the typical wormhole 
fluctuation are very intense. They have gravitational interactions that cannot 
be neglected. The typical electromagnetic mass energy for one wormhole is 

ml - (fi~/G)"~, (10) 

and the typical separation of two such field disturbances is of the order 
I,* - (fiG/c3)l”. From these estimates it follows that the gravitational energy of 
interaction of two nearby wormholes is of the order 

E BraY - -Gm?/L*. (11) 
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There is a resultant decrease in the overall mass of the pair of neighboring 
wormholes, 

m mav = &ravlc2 - - (fi~/G)“~, (12) 

which is of the same order as the positive electromagnetic masses of those two 
concentrations of energy. In other words, circumstances are favorable for the 
local compensation of electromagnetic energy by gravitational energy. Moreover, 
to the extent that this compensation holds locally, nearby wormholes exert no 
gravitational attraction on remote concentrations of mass-energy. The possi- 
bility is open to have a vacuum state with zero net energy density. In any case 
we conclude that it is essential to allow for jluctuations in the metric and gravita- 
tional interactions in any proper treatment of the compensation problem-the prob- 
lem of compensation of “infinite” energies that is so central to the physics of 
fields and particles.3 

The theory of general relativity tells one that it is not possible to give a well- 
defined meaning to the energy of the electromagnetic jield in a curved space (6). 
Only the sum of the energy of the electromagnetic field and the gravitational 
energy has a well-defined meaning in geometrodynamics, and then only when the 
space is asymptotically flat, or possibly also when it is closed (7). This circum- 
stance strengthens the conclusion that gravitation cannot be overlooked in any 
satisfactory account of the zero energy density of the vacuum. 

We do not pretend to have shown that quantum geometrodynamics solves the 
compensation problem within its sphere of applicability. That point can only be 
tested by a detailed investigation, for which the tools are still only in course of 
manufacture (2) .l 

If this energy compensation shall be established, however, then we will have 
a divergence-free quantum theory of the continuum such as has never before 
been in our grasp. 

Is this continuum picture plainly incompatible with the world of elementary 
particIe physics? Let us begin with electrons. In electron theory one distinguishes 
between the mass and charge of the “undressed electron” and the mass and 
charge of the experimental electron. The factors of conversion from one quantity 
to the other are divergent, but only logarithmically divergent. Because of this 
divergence it is sometimes claimed that only the renormalized theory has any 
physical significance. However, if the continuum picture makes sense, then it is 
reasonable to believe that the factors of conversion are not infinite, but only very 
large. When the logarithm of the ratio of two wave numbers appears as the argu- 
ment of the logarithm, we shall assume that the upper limit is not infinity, but 
L*-I, because at such wave numbers the micromultiple connectedness of space 
makes an essential change in the conventional analysis. Such a logarithm appears 

3 As especially emphasized by Niels Bohr in lectures and discussions. 
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in the leading term of the standard expression for the electromagnetic self 
energy or self mass, am, of the electron (8): 

am/m - (3/2?r) (e”/h) In (k,,,/k,). (13) 

We will expect that Ic,,, should be set equal to a quantity of the order Lrl, 
and that we should add to (13) an expression of a different mathematical form 
to represent the contribution to the energy due to wave numbers from k,,, to 
00. In view of the orders of magnitude, 

k,,,/k, - 1033/10’1 - e5’, 

we cannot say that Eq. (13) is incompatible with the long-advocated view of 
Lorenta, that all of the energy of the electron is of electromagnetic origin. 

We are therefore led to consider the view that the electron is nothing but a 
collective state of excitation of the foam-like medium symbolized by Fig. 2. This 
collective disturbance is suggested in Fig. 2 by the slightly closer spacing of the 
wormholes within the dashed circle. The fractional increase in the concentration 
of electromagnetic mass-energy within the electron, 

rn/Lm3 - m4c”/ii3 = 1.57 X 10” g/cm”, (15) 

is fantastically small compared to the concentration of electromagnetic energy 
already present in the vacuum, 5 X log3 g/cm3 [Eq. (S)]. In other words the 
electron is not a natural starting point for the description of nature, according 
to the present reinterpretation of the views of Lorentz. Instead it is a first order 
correction to vacuum physics. That vacuum, that zero order state of affairs, 
with its enormous concentrations of electromagnetic energy and multiply-con- 
nected topologies, has to be described properly before one has the starting point 
for a proper perturbation theoretic development. On this view it is a marvellous 
achievement of subtraction physics that it can deal with such a wide range of 
questions as it does without having at its disposal a convenient theory of the 
charge and mass of the electron. The accuracy of its predictions, as well as the 
divergence of its foundations, are attributed on the present view to the small- 
ness of the characteristic lengths, L - L*, of vacuum physics, compared to the 
lengths, L - L, , of electron physics. 

The charge of the experimental electron is small compared with the “un- 
dressed charge”, according to well-known considerations from the quantum 
theory of the electron. Despite appearances, this result does not contradict 
the atomicity of electric charge even when a unique value is assigned to the 
“undressed charge”. The theory assigns to the experimental charge something 
of the character of an expectation value that neither needs to be nor is an in- 
tegral multiple of the undressed charge. Consequently there is no obvious con- 
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TABLE II 

DISCREPANCY BETWEEN OBSERVATION AND ELEMENTARY EXPECTATIONS DERIVED FROM 

THE MOST OBVIOUS UNITS OF LENGTH AND ENERGY (I) FOR ELECTRON PHYSICS 

(2) FOR SUPERCONDUCTIVITY 

Observation versus First expectation 

I Electron physics I Superconductivity 
I I 

Distance discrepancy I lo-” to 10-13 cm 2i.s IO-33 cm 10e3 cm us IO-8 cm 
Discrepancy in mass-energy lo-27 g us IO-5 g 10e3 to lo+ ev us 10 ev 

tradiction between a quantized charge e for quantized collective disturbances 
and an unquantized charge of the order qfluot - (&c)“~ for the undressed charges. 

In the transcription of the idea of Lorentz that we are trying to assess, the 
electron mass energy is viewed as the lowest characteristic energy for a stable 
collective disturbance in the Einstein-Maxwell field. Why should this mass 
energy be so small compared to the only characteristic mass energy that has so 
far appeared in quantum geometrodynamics, ml = (fit/G)“’ = 2.18 X 10m5 g? 
In Table II we put this question into juxtaposition with another puzzle, the 
origin of the phenomenon of superconductivity. The evidence indicates that 
superconductivity is a collective phenomenon associated with weak residual 
interactions (9). Obviously there is no reason to expect any direct analogy be- 
tween collective disturbances in the Einstein-Maxwell field and those that take 
place in a crystal lattice. Let it nevertheless be insisted that one shall leave no 
stone unturned in searching for special phenomena associated with the propaga- 
tion of energy through space. Then one is led to consider the relation between 
effective frequency and effective wave number (Fig. 3), a relation that would be 
linear in flat space. However, disturbances of very short wavelength, ~10~~~ cm, 
will feel out the microcurvature of space and will not propagate normally. The 
same will be true of disturbances of very long wavelength, comparable to the 
radius of the universe. Consequently a disturbance that is originally localized 
will be dispersed. However, if the dispersion curve possesses a point of inflection, 
as indicated in Fig. 3, then disturbances made out of wavelengths near the point 
of inflection will keep together for a long time in the linear approximation, and 
could even be imagined to remain completely stable when one goes beyond the 
elementary superposition approximation. It is easy to write down a mathematical 
expression for a dispersion curve which will put the point of inflection at wave 
numbers of the order of 10” to lOI cm-‘, such as are characteristic of electron 
physics. There is no point in investigating such ideas now. We are trying here to 
find out,not whether pure quantum geometrodynamics can account for elementary 
particle physics, but whether there is some way to prove that it cannot. We see 
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-Effective Wave Number-w 

FIG. 3. Highly schematic representation of the nature of propagation of disturbances in 
a space which possesses both a macrocurvature on the scale of the universe and a micro- 
curvature on the scale of the elementary length (hG/c3)“* that is characteristic of gravita- 
tional fluctuations. 

no simple way short of detailed analysis, to disprove the possibility that the 
masses of electrons and other elementary particles correspond to characteristic 
states of excitation of collective disturbances in the metric, as symbolized by 
Fig. 2. 

What about nuclear forces? Will two localized collective disturbances interact 
via pure electromagnetic and gravitational field fluctuations with enough 
strength to account for the binding of two nucleons? In this connection one recalls 
that the observed strength of this interaction is only one or two orders of mag- 
nitude greater than ordinary electrostatic interactions. One also recalls that 
chemical forces between atoms were long thought to be different in origin from 
electrical forces until the connection was recognized, thanks not least to G. N. 
Lewis and P. Debye. It appears most difficult to rule out in advance a purely 
geometrodynamical account of nuclear forces. 

Having touched on the orders of magnitude of particle masses, and of nuclear 
forces, we come to the final and crucial point: spin. How can a classical theory 
endowed with fields of integral spin possibly give on quantixation a spin G 
such as is required to account for the properties of the neutrino, the electron, and 
other particles? From the beginning Pauli referred to spin as a “nonclassical two 
valuedness”. Is there anything about the process of formulating Feynman’s sum 
over histories, anything about two choices for the orientation of each elementary 
space-time volume, or any other feature, that forces the introduction of any 
such nonclassical two-valuedness? Unless there is, pure quantum geometrudy- 
namics must be judged dejkient as a basis for elementary particle physics. There- 
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fore the question of the origin of spin is decisive for the asse?ment of quantum 
geometrodynamics. 

RECEIVED: July 11, 1957 
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