JP2017078752A - Inner focus optical system - Google Patents

Inner focus optical system Download PDF

Info

Publication number
JP2017078752A
JP2017078752A JP2015205778A JP2015205778A JP2017078752A JP 2017078752 A JP2017078752 A JP 2017078752A JP 2015205778 A JP2015205778 A JP 2015205778A JP 2015205778 A JP2015205778 A JP 2015205778A JP 2017078752 A JP2017078752 A JP 2017078752A
Authority
JP
Japan
Prior art keywords
lens group
lens
refractive power
object side
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015205778A
Other languages
Japanese (ja)
Inventor
武久 小山
Takehisa Koyama
武久 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Corp
Original Assignee
Sigma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Corp filed Critical Sigma Corp
Priority to JP2015205778A priority Critical patent/JP2017078752A/en
Publication of JP2017078752A publication Critical patent/JP2017078752A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inner focus optical system which employs an inner focusing system suitable for an autofocus camera, has a small image height change rate when finely vibrating (wobbling) focus lens groups in a direction along an optical axis, is bright with an F number equivalent to 1.4, and has an angle of view of equivalent to 24 mm at conversion focal length of a 35 mm format.SOLUTION: An optical system comprises, in order from an object side to an image side, a first lens group G1 of negative refractive power, an aperture diaphragm, a second lens group G2 of positive refractive power, a third lens group G3 of negative refractive power, and a fourth lens group G4 of positive refractive power. When focusing from an object side infinity to an object side at a short distance, the third lens group G3 is moved toward an image plane side.SELECTED DRAWING: Figure 1

Description

本発明は、スチルカメラ、ビデオカメラ等の撮像装置に用いる撮影レンズに好適な光学系に関し、オートフォーカスカメラに適したインナーフォーカス方式を採用し、またフォーカスレンズ群を光軸に沿う方向への微少な振動(ウオブリング)をさせた際の像高変化率が小さく、F値が1.4と明るく、35mm判換算焦点距離で24mm相当の画角を有するインナーフォーカス光学系に関するものである。   The present invention relates to an optical system suitable for a photographic lens used in an imaging apparatus such as a still camera or a video camera, and employs an inner focus system suitable for an autofocus camera, and a focus lens group in a direction along the optical axis. The present invention relates to an inner focus optical system that has a small image height change rate when it is vibrated (wobbling), has a bright F value of 1.4, and has a field angle equivalent to 24 mm at a 35 mm equivalent focal length.

従来、写真カメラやスチルビデオカメラに用いられる広角レンズはレトロフォーカスタイプが用いられてきた。これはミラーアップ機構を採用する一眼レフシステム用として、一定以上のバックフォーカスを確保するためであった。   Conventionally, a wide-angle lens used for a photographic camera or a still video camera has been a retrofocus type. This was to secure a back focus of a certain level or more for a single lens reflex system employing a mirror up mechanism.

一方、ミラーレス一眼タイプのボディは動画撮影にも頻繁に使用されるため、そのオートフォーカス方式に、フォーカスレンズ群を光軸に沿う方向へ微少振動(ウオブリング)させ続けることで、常にフォーカス駆動方向を判断し続ける形式のインナーフォーカス方式が採用されることが多い。その際、ウオブリング時の像高変化率が大きいと、鑑賞者が画面に映る被写体の倍率変動を認識し、目障りに感じてしまうため、フォーカス変化に対し像高変化率が小さいフォーカス方式を必要としている。   On the other hand, mirrorless interchangeable-lens cameras are often used for movie shooting, so the autofocus system always keeps the focus lens group oscillating slightly in the direction along the optical axis. In many cases, the inner focus method is used. At that time, if the rate of change in image height during wobbling is large, the viewer will perceive fluctuations in the magnification of the subject on the screen and feel it annoying. Yes.

このような要求に対し特許文献1では、物体側から順に正の屈折力の第1レンズ群、開口絞り、正の屈折力の第2レンズ群で構成し、第2レンズ群中に含まれる負の屈折力の単レンズを光軸上移動することにより無限遠物体側から近距離物体側へのフォーカシングを行い、前記負の屈折力の単レンズより像側に少なくとも1枚の正レンズを含み、所定の条件を満足させることで、大口径でありながら、フォーカス速度の高速化できるインナーフォーカスレンズを達成している。   In response to such a requirement, Patent Document 1 includes a first lens group having a positive refractive power, an aperture stop, and a second lens group having a positive refractive power in order from the object side, and is included in the second lens group. Focusing from the infinity object side to the short-distance object side by moving a single lens having a refractive power of at least one positive lens closer to the image side than the single lens having a negative refractive power, By satisfying predetermined conditions, an inner focus lens that achieves a high focusing speed while achieving a large aperture has been achieved.

また特許文献2では、物体側より順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3からなり、開口絞りは第1レンズ群G1と第2レンズ群G2との間に配置し、第2レンズ群G2を像面側へ移動することでフォーカシングを行う大口径レンズにおいて、所定の条件を満足させることで、簡易な構成ながら、動画撮影時のオートフォーカスに対応するため、フォーカスレンズ重量を削減しつつ、フォーカシングによる収差変動が少なく、インナーフォーカス方式を採用する開放F値1.4程度の明るさにも適応可能で高性能な大口径レンズを提供している。   In Patent Document 2, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the third lens group G3 having a positive refractive power are arranged in this order from the object side. A large-aperture lens that is arranged between the first lens group G1 and the second lens group G2 and performs focusing by moving the second lens group G2 to the image plane side can satisfy simple conditions. Although it is configured, it supports autofocus during movie shooting, reduces the weight of the focus lens, reduces aberration fluctuations due to focusing, and can be applied to brightness with an open F value of about 1.4 using the inner focus method. We provide high-performance large-aperture lenses.

また特許文献3では、物体側から順に、第1レンズ群と、明るさ絞りと、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、からなり、第1レンズ群は少なくとも1枚の負レンズと少なくとも1枚の正レンズを有し、第2レンズ群は少なくとも1枚の負レンズと少なくとも1枚の正レンズを有し、第3レンズ群は少なくとも1枚の負レンズを有し、第4レンズ群は少なくとも1枚の正レンズを有し、無限遠物体から近距離物体への合焦の際に、第2レンズ群との距離を広げ、且つ第4レンズ群との距離を狭めるように、第3レンズ群が像側に移動し、所定の条件を満足させることで良好な結像性能を有するインナーフォーカスレンズ系を提供している。   In Patent Document 3, in order from the object side, a first lens group, an aperture stop, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive refractive power. The first lens group has at least one negative lens and at least one positive lens, and the second lens group has at least one negative lens and at least one positive lens. The third lens group has at least one negative lens, the fourth lens group has at least one positive lens, and when focusing from an object at infinity to a near object, Inner having good imaging performance by moving the third lens group to the image side and satisfying a predetermined condition so as to widen the distance from the second lens group and narrow the distance from the fourth lens group. A focus lens system is provided.

また特許文献4では、物体側から順に、正の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3からなり、無限遠物体から近距離物体への合焦の際に、第2レンズ群G2が物体側へ移動し、第1レンズ群G1と第3レンズ群G3は像面Iに対して固定であり、前記第1レンズ群G1は、絞りSを含み、所定のレンズ群からなり、前記第3レンズ群G3は、所定のレンズ群からなり、所定の条件式を満足することで結像光学系と撮像素子との間隔が短く、小型化を実現しており、Fナンバーが小さく、光線射出角を抑えることができ、無限遠撮影から近距離撮影において諸収差を良好に補正した、画角が40〜60°程度の結像光学系を提供している。   Further, in Patent Document 4, in order from the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the third lens group G3 having a negative refractive power are infinite. During focusing from a distant object to a close object, the second lens group G2 moves to the object side, and the first lens group G1 and the third lens group G3 are fixed with respect to the image plane I, and The first lens group G1 includes a stop S and includes a predetermined lens group, and the third lens group G3 includes a predetermined lens group, and satisfies a predetermined conditional expression, thereby satisfying an imaging optical system, an imaging element, and the like. With a short interval, small size, small F-number, low light emission angle, and excellent correction of various aberrations from infinity to short-distance shooting. An imaging optical system of a degree is provided.

特開2012−220654号公報JP 2012-220654 A 特開2013−3324号公報JP 2013-3324 A 特開2013−130669号公報JP 2013-130669 A 特開2015−75501号公報Japanese Patent Laying-Open No. 2015-75501

しかしながら前記特許文献1に開示されたレンズ系では、焦点距離のバリエーションはあるものの、絞りより物体側のレンズ群が正の屈折力を持つため、35mm換算焦点距離で28mm程度の画角しか広角側の開示が無く、この構成からは35mm換算焦点距離で24mmの画角でかつF値1.4程度を達成することは困難である。   However, in the lens system disclosed in Patent Document 1, although there are variations in focal length, since the lens group on the object side of the aperture has a positive refractive power, only a field angle of about 28 mm at a 35 mm equivalent focal length is on the wide angle side. From this configuration, it is difficult to achieve an angle of view of 24 mm at a 35 mm equivalent focal length and an F value of about 1.4.

また、前記特許文献2に開示されたレンズ系では、フォーカスレンズ群と絞りが隣接しているため、動画撮影時のオートフォーカスのフォーカスレンズ群を光軸に沿う方向へ微少振動(ウオブリング)させた際の像高変化率が大きいため、鑑賞者が画面に映る被写体の倍率変動を認識し、目障りに感じてしまう課題がある。さらに第1群がガウスタイプで構成されており、35mm換算焦点距離で50mm程度の画角しか開示が無いため、さらなる広角化は困難である。   In the lens system disclosed in Patent Document 2, since the focus lens group and the stop are adjacent to each other, the focus lens group for autofocus at the time of moving image shooting is slightly vibrated (wobbling) in the direction along the optical axis. Since the change rate of the image height at the time is large, there is a problem that the viewer recognizes a change in the magnification of the subject on the screen and feels uncomfortable. Furthermore, since the first group is composed of a Gaussian type and only an angle of view of about 50 mm is disclosed with a 35 mm equivalent focal length, it is difficult to further widen the angle.

また、前記特許文献3に開示されたレンズ系では、絞りより物体側である第1レンズ群の屈折力の制約が無く、また開示の実施例の第1レンズ群は弱い負の屈折力しか持たないため、実施例からもあるように35mm換算焦点距離で32mm程度の画角でF値が1.7程度の実施例しか開示されておらず、この構成からは35mm換算焦点距離で24mmの画角、およびF値1.4程度を達成することは困難である。   In the lens system disclosed in Patent Document 3, there is no restriction on the refractive power of the first lens unit that is on the object side of the stop, and the first lens unit of the disclosed embodiment has only a weak negative refractive power. Therefore, only an embodiment having an F angle of about 1.7 at an angle of view of about 32 mm at a focal length of 35 mm as disclosed in the embodiments is disclosed. From this configuration, an image of 24 mm at a focal length of 35 mm is disclosed. It is difficult to achieve an angle and an F value of about 1.4.

また、前記特許文献4では、物体側から順に、正の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3からなり、無限遠物体から近距離物体への合焦の際に、第2レンズ群G2が物体側へ移動し、第1レンズ群G1と第3レンズ群G3は像面Iに対して固定であり、前記第1レンズ群G1は、絞りSを含み、所定のレンズ群からなり、前記第3レンズ群G3は、所定のレンズ群からなり、所定の条件式を満足することで、小型で、Fナンバーが小さく、光線射出角を抑え、無限遠撮影から近距離撮影において諸収差を良好に補正しているが、画角が40〜60°程度(35mm換算焦点距離で37mmから59mm程度)の狭い画角でしか実現できていなく、この構成からは35mm換算焦点距離で24mmの画角を達成することは困難である。   In Patent Document 4, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the third lens group G3 having a negative refractive power are sequentially arranged from the object side. The second lens group G2 moves to the object side during focusing from an object at infinity to a near object, and the first lens group G1 and the third lens group G3 are fixed with respect to the image plane I. The first lens group G1 includes a stop S and includes a predetermined lens group, and the third lens group G3 includes a predetermined lens group, and satisfies a predetermined conditional expression. Is small, the light emission angle is suppressed, and various aberrations are favorably corrected from infinity shooting to short-distance shooting, but a narrow image with a field angle of about 40 to 60 ° (35 mm equivalent focal length of about 37 mm to 59 mm). It can only be realized at the corners. It is difficult to achieve the angle of view of 24mm in m equivalent focal length.

そこで、本発明は、以下に示す手段により、オートフォーカスカメラに適したインナーフォーカス方式を採用し、またフォーカスレンズ群を光軸に沿う方向へ微少振動(ウオブリング)させた際の像高変化率が小さく、F値が1.4と明るく、35mm判換算焦点距離で24mm相当の画角を有するインナーフォーカス光学系を提供する。   Therefore, the present invention adopts an inner focus method suitable for an autofocus camera by the means described below, and an image height change rate when the focus lens group is slightly vibrated (wobbling) in a direction along the optical axis. Provided is an inner focus optical system that is small and bright with an F value of 1.4 and has an angle of view equivalent to 24 mm at a 35 mm equivalent focal length.

前述の課題を解決するため第1の発明は、物体側から像側へ順に、負の屈折力の第1レンズ群G1と、開口絞りと、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とからなり、無限遠物体側から近距離物体側へのフォーカシングをする際、第3レンズ群G3が像面方向へ移動し、以下の条件を満足することを特徴とするインナーフォーカス光学系とした。
(1)−6.5<f1/f< −2.8
(2)−5.6<f3/f<−3.0
(3)−0.68<f2/f1<−0.24
ただし
f : 全系の無限遠合焦状態での焦点距離
f1 : 第1レンズ群G1の焦点距離
f2 : 第2レンズ群G2の焦点距離
f3 : 第3レンズ群G3の焦点距離
In order to solve the above-described problem, the first invention is arranged in order from the object side to the image side, the first lens group G1 having a negative refractive power, the aperture stop, the second lens group G2 having a positive refractive power, The third lens group G3 having a positive refractive power and the fourth lens group G4 having a positive refractive power, and when focusing from the infinity object side to the short distance object side, the third lens group G3 is in the image plane direction. The inner focus optical system is characterized by satisfying the following conditions.
(1) -6.5 <f1 / f <-2.8
(2) -5.6 <f3 / f <-3.0
(3) -0.68 <f2 / f1 <-0.24
Where f: focal length in the infinite focus state of the entire system f1: focal length of the first lens group G1 f2: focal length of the second lens group G2 f3: focal length of the third lens group G3

前述の課題を解決するため第2の発明は、、第1の発明においてさらに、無限遠合焦時の、前記第3レンズ群G3の物体側の面を基準とし、前記第2レンズ群G2による前記開口絞りの結像位置をFcEntpとした時、以下の条件を満足することを特徴とするインナーフォーカス光学系とした。
(4)0.5<FcEntp/f3<0.95
(5)FcEntp/f<−2.0
In order to solve the above-described problem, the second invention is based on the second lens group G2 based on the object side surface of the third lens group G3 when focusing on infinity in the first invention. When the imaging position of the aperture stop is FcEntp, the inner focus optical system satisfies the following conditions.
(4) 0.5 <FcEntp / f3 <0.95
(5) FcEntp / f <−2.0

前述の課題を解決するため第3の発明は、第1または2の発明においてさらに、前記開口絞りの像面側に、物体側より順に、負の屈折力のレンズLa、正の屈折力のレンズLb、負の屈折力のレンズLcの3枚が接合された接合レンズを有し、前記レンズLa、Lb、Lcの接合レンズの焦点距離、合成厚が以下の条件を満足することを特徴とするインナーフォーカス光学系とした。
(6)−0.15<f/fabc<0.06
(7)0.5<OALabc/f<1.5
ただし
fabc : La,Lb,Lcの接合レンズの焦点距離
OALabc : La,Lb,Lcの接合レンズの合成厚
In order to solve the above-mentioned problem, in a third invention, in the first or second invention, a lens La having a negative refractive power and a lens having a positive refractive power are arranged in order from the object side toward the image plane side of the aperture stop. The lens has a cemented lens in which Lb and a lens Lc having a negative refractive power are cemented, and the focal length and the combined thickness of the lenses La, Lb, and Lc satisfy the following conditions. An inner focus optical system was adopted.
(6) -0.15 <f / fabc <0.06
(7) 0.5 <OALAbc / f <1.5
However, the focal length of the cemented lens of fabc: La, Lb, and Lc OALabc: the combined thickness of the cemented lens of La, Lb, and Lc

前述の課題を解決するため第4の発明は、第1乃至3いずれかの発明においてさらに、以下の条件を満足することを特徴とするインナーフォーカス光学系とした。
(8)−1.3<M4×(1−M3)<−0.5
ただし、
M3:物体距離無限遠時の第3レンズ群G3の横倍率
M4:物体距離無限遠時の第4レンズ群G4の横倍率
In order to solve the above-mentioned problems, the fourth invention is an inner focus optical system characterized in that, in any of the first to third inventions, the following conditions are satisfied.
(8) -1.3 <M4 2 × (1-M3 2 ) <− 0.5
However,
M3: Lateral magnification of the third lens group G3 when the object distance is infinity M4: Lateral magnification of the fourth lens group G4 when the object distance is infinity

本発明により、オートフォーカスカメラに適したインナーフォーカス方式を採用し、またフォーカスレンズ群を光軸に沿う方向へ微少振動(ウオブリング)させた際の像高変化率が小さく、F値が1.4と明るく、35mm判換算焦点距離で24mm相当の画角を有するインナーフォーカス光学系を提供することができる。   According to the present invention, an inner focus method suitable for an autofocus camera is adopted, and an image height change rate when a focus lens group is slightly vibrated (wobbled) in a direction along the optical axis is small, and an F value is 1.4. An inner focus optical system having a field angle equivalent to 24 mm at a 35 mm equivalent focal length can be provided.

本発明の実施例1のインナーフォーカス光学系の撮影距離無限遠におけるレンズ構成図。1 is a lens configuration diagram of an inner focus optical system according to Example 1 of the present invention at an infinite shooting distance. FIG. 本発明の実施例1の撮影距離無限遠における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite according to Example 1 of the present invention. 本発明の実施例1の撮影倍率40倍における縦収差図。FIG. 6 is a longitudinal aberration diagram at the photographing magnification of 40 times in Example 1 of the present invention. 本発明の実施例1の撮影距離200mm における縦収差図。FIG. 4 is a longitudinal aberration diagram at the shooting distance 200 mm 2 in Example 1 of the present invention. 本発明の実施例1の撮影距離無限遠における横収差図。FIG. 5 is a lateral aberration diagram at infinite shooting distance according to Example 1 of the present invention. 本発明の実施例1の撮影倍率40倍 における横収差図。FIG. 4 is a lateral aberration diagram at the photographing magnification of 40 in Example 1 of the present invention. 本発明の実施例1の撮影距離200mm における横収差図。FIG. 3 is a lateral aberration diagram at the shooting distance 200 mm 2 in Example 1 of the present invention. 本発明の実施例2のインナーフォーカス光学系の撮影距離無限遠におけるレンズ構成図。FIG. 6 is a lens configuration diagram of an inner focus optical system according to Example 2 of the present invention at an imaging distance of infinity. 本発明の実施例2の撮影距離無限遠における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite according to Example 2 of the present invention. 本発明の実施例2の撮影倍率40倍における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging magnification of 40 times in Example 2 of the present invention. 本発明の実施例2の撮影距離200mm における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging distance of 200 mm in Example 2 of the present invention. 本発明の実施例2の撮影距離無限遠における横収差図。FIG. 6 is a lateral aberration diagram at an imaging distance infinite according to Example 2 of the present invention. 本発明の実施例2の撮影倍率40倍 における横収差図。FIG. 6 is a lateral aberration diagram at the photographing magnification of 40 in Example 2 of the present invention. 本発明の実施例2の撮影距離200mm における横収差図。FIG. 5 is a lateral aberration diagram at an imaging distance of 200 mm 2 according to Example 2 of the present invention. 本発明の実施例3のインナーフォーカス光学系の撮影距離無限遠におけるレンズ構成図。FIG. 6 is a lens configuration diagram of an inner focus optical system according to Example 3 of the present invention at an imaging distance of infinity. 本発明の実施例3の撮影距離無限遠における縦収差図。FIG. 7 is a longitudinal aberration diagram at an imaging distance infinite according to Example 3 of the present invention. 本発明の実施例3の撮影倍率40倍における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging magnification of 40 times in Example 3 of the present invention. 本発明の実施例3の撮影距離200mm における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging distance of 200 mm in Example 3 of the present invention. 本発明の実施例3の撮影距離無限遠における横収差図。FIG. 6 is a lateral aberration diagram at infinite shooting distance according to Example 3 of the present invention. 本発明の実施例3の撮影倍率40倍 における横収差図。FIG. 6 is a lateral aberration diagram at the photographing magnification of 40 in Example 3 of the present invention. 本発明の実施例3の撮影距離200mm における横収差図。FIG. 6 is a lateral aberration diagram at an imaging distance of 200 mm 2 in Example 3 of the present invention. 本発明の実施例4のインナーフォーカス光学系の撮影距離無限遠におけるレンズ構成図。FIG. 9 is a lens configuration diagram of an inner focus optical system according to Example 4 of the present invention at an imaging distance of infinity. 本発明の実施例4の撮影距離無限遠における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite according to Example 4 of the present invention. 本発明の実施例4の撮影倍率40倍における縦収差図。FIG. 10 is a longitudinal aberration diagram at an imaging magnification of 40 times in Example 4 of the present invention. 本発明の実施例4の撮影距離200mm における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging distance of 200 mm in Example 4 of the present invention. 本発明の実施例4の撮影距離無限遠における横収差図。FIG. 10 is a lateral aberration diagram at infinite shooting distance according to Example 4 of the present invention. 本発明の実施例4の撮影倍率40倍 における横収差図。FIG. 6 is a lateral aberration diagram at the photographing magnification of 40 in Example 4 of the present invention. 本発明の実施例4の撮影距離200mm における横収差図。FIG. 6 is a lateral aberration diagram at an imaging distance of 200 mm in Example 4 of the present invention. 本発明の実施例5のインナーフォーカス光学系の撮影距離無限遠におけるレンズ構成図。FIG. 6 is a lens configuration diagram of an inner focus optical system according to Example 5 of the present invention at an imaging distance of infinity. 本発明の実施例5の撮影距離無限遠における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite according to Example 5 of the present invention. 本発明の実施例5の撮影倍率40倍における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging magnification of 40 times according to Example 5 of the present invention. 本発明の実施例5の撮影距離200mm における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging distance of 200 mm in Example 5 of the present invention. 本発明の実施例5の撮影距離無限遠における横収差図。FIG. 10 is a lateral aberration diagram at infinite shooting distance according to Example 5 of the present invention. 本発明の実施例5の撮影倍率40倍 における横収差図。FIG. 6 is a lateral aberration diagram at the photographing magnification of 40 in Example 5 of the present invention. 本発明の実施例5の撮影距離200mm における横収差図。FIG. 10 is a lateral aberration diagram at an imaging distance of 200 mm in Example 5 of the present invention. 本発明の実施例6のインナーフォーカス光学系の撮影距離無限遠におけるレンズ構成図。FIG. 10 is a lens configuration diagram of an inner focus optical system according to Example 6 of the present invention at an imaging distance of infinity. 本発明の実施例6の撮影距離無限遠における縦収差図。FIG. 9 is a longitudinal aberration diagram at an imaging distance infinity according to Example 6 of the present invention. 本発明の実施例6の撮影倍率40倍における縦収差図。FIG. 12 is a longitudinal aberration diagram at an imaging magnification of 40 times in Example 6 of the present invention. 本発明の実施例6の撮影距離200mm における縦収差図。FIG. 6 is a longitudinal aberration diagram at an imaging distance of 200 mm in Example 6 of the present invention. 本発明の実施例6の撮影距離無限遠における横収差図。FIG. 6 is a lateral aberration diagram at infinite shooting distance according to Example 6 of the present invention. 本発明の実施例6の撮影倍率40倍 における横収差図。FIG. 11 is a lateral aberration diagram at Example 6 with a shooting magnification of 40 ×. 本発明の実施例6の撮影距離200mm における横収差図。FIG. 12 is a lateral aberration diagram at an imaging distance of 200 mm in Example 6 of the present invention. 本発明の実施例7のインナーフォーカス光学系の撮影距離無限遠におけるレンズ構成図。FIG. 10 is a lens configuration diagram of an inner focus optical system according to Example 7 of the present invention at an imaging distance of infinity. 本発明の実施例7の撮影距離無限遠における縦収差図。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinite according to Example 7 of the present invention. 本発明の実施例7の撮影倍率40倍における縦収差図。FIG. 10 is a longitudinal aberration diagram at an imaging magnification of 40 times in Example 7 of the present invention. 本発明の実施例7の撮影距離200mm における縦収差図。FIG. 9 is a longitudinal aberration diagram at an imaging distance of 200 mm in Example 7 of the present invention. 本発明の実施例7の撮影距離無限遠における横収差図。FIG. 10 is a lateral aberration diagram at infinite shooting distance according to Example 7 of the present invention. 本発明の実施例7の撮影倍率40倍 における横収差図。FIG. 10 is a transverse aberration diagram at Example 6 with a photographing magnification of 40. FIG. 本発明の実施例7の撮影距離200mm における横収差図。FIG. 12 is a lateral aberration diagram at an imaging distance of 200 mm in Example 7 of the present invention.

本発明の実施例のインナーフォーカス光学系は、図1、8、15、22、29、36、43に示すレンズ構成図からわかるように、物体側から像側へ順に、負の屈折力の第1レンズ群G1と、開口絞りと、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とからなり、無限遠物体側から近距離物体側へのフォーカシングをする際、第3レンズ群G3が像面方向へ移動することを特徴とする。   As can be seen from the lens configuration diagrams shown in FIGS. 1, 8, 15, 22, 29, 36, and 43, the inner focus optical system of the embodiment of the present invention has negative refractive power in order from the object side to the image side. 1 lens group G1, an aperture stop, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a fourth lens group G4 having a positive refractive power. The third lens group G3 moves in the image plane direction when focusing from the object side to the short distance object side.

以下、本実施形態のインナーフォーカス光学系について説明する。本発明では、光学系の屈折力配置を物体側から順に負の屈折力の第1レンズ群G1、開口絞り、正の屈折力の第2レンズ群G2、負の屈折力のフォーカスレンズ群である第3レンズ群G3、更に正の屈折力の第4レンズ群G4とし、光学系全体を開口絞りより物体側が負の屈折力、開口絞りより像側が正の屈折力とした所謂レトロフォーカス型屈折力配置とし、フォーカス時のウオブリングによる像高変化率を小さくし、かつ35mm判換算焦点距離で24mm相当の画角を有する光学系を達成している。   Hereinafter, the inner focus optical system of this embodiment will be described. In the present invention, the refractive power arrangement of the optical system is, in order from the object side, the first lens group G1 having negative refractive power, the aperture stop, the second lens group G2 having positive refractive power, and the focus lens group having negative refractive power. A so-called retrofocus type refracting power in which the third lens group G3 and a fourth lens group G4 having a positive refracting power are used, and the entire optical system has a negative refracting power on the object side from the aperture stop and a positive refracting power on the image side from the aperture stop. An optical system having an angle of view equivalent to 24 mm at a 35 mm equivalent focal length is achieved by reducing the image height change rate due to wobbling during focusing.

上記構成が必要な理由は以下のとおりである。すなわち、開口絞りとフォーカスレンズ群の間に正の屈折力のレンズ群を配置することで、フォーカス群から見た開口絞りの像を遠方に射影することにより、上記像高変化率を小さくすることが可能となり、さらにフォーカスレンズ群の像側に正の屈折力のレンズ群を配置することでフォーカスレンズ群を通過した主光線が、その正屈折力のレンズ群の効果により、その主光線の像面への入射角が緩やかになり、更なる像高変化率の縮小に寄与する。   The reason why the above configuration is necessary is as follows. That is, by arranging a lens unit having a positive refractive power between the aperture stop and the focus lens group, the image of the aperture stop viewed from the focus group is projected far away, thereby reducing the image height change rate. In addition, by disposing a lens unit having a positive refractive power on the image side of the focus lens group, the principal ray that has passed through the focus lens group is reflected by the effect of the lens unit having the positive refractive power. The incident angle on the surface becomes gradual, which contributes to further reduction in the image height change rate.

また、開口絞りより物体側に負の屈折力のレンズ群を配置することにより、広い画角の入射角をこの負の屈折力のレンズ群で緩和させ、開口絞りを通過する主光線角を緩やかにすることで画角に対する収差補正能力を上げている。以上により、フォーカスレンズ群を光軸に沿う方向への微少な振動(ウオブリング)をさせた際の像高変化率が小さく、さらに35mm判換算焦点距離で24mm相当の画角を有する光学系の提供が可能となる。   Also, by placing a lens unit with negative refractive power on the object side of the aperture stop, the incident angle with a wide angle of view is relaxed with this lens unit with negative refractive power, and the chief ray angle passing through the aperture stop is moderated. This increases the aberration correction capability for the angle of view. As described above, an optical system having a small image height change rate when the focus lens group is slightly vibrated (wobbling) in the direction along the optical axis and having an angle of view equivalent to 24 mm at a 35 mm equivalent focal length is provided. Is possible.

さらに、上記の通り、本実施例のインナーフォーカス光学系は以下の条件式を満足することを特徴とする。
(1)−6.5<f1/f< −2.8
(2)−5.6<f3/f<−3.0
(3)−0.68<f2/f1<−0.24
ただし
f : 全系の無限遠合焦状態での焦点距離
f1 : 第1レンズ群G1の焦点距離
f2 : 第2レンズ群G2の焦点距離
f3 : 第3レンズ群G3の焦点距離
Furthermore, as described above, the inner focus optical system of the present embodiment satisfies the following conditional expression.
(1) -6.5 <f1 / f <-2.8
(2) -5.6 <f3 / f <-3.0
(3) -0.68 <f2 / f1 <-0.24
Where f: focal length in the infinite focus state of the entire system f1: focal length of the first lens group G1 f2: focal length of the second lens group G2 f3: focal length of the third lens group G3

上記のように本発明のインナーフォーカス光学系は、ウオブリングによるオートフォーカスが可能であることを前提にしている。すなわちウオブリングの際の像高変化率が小さい形式としている。そのためには、ウオブリングによるフォーカスレンズ群の主光線高の変動を小さくすればよく、無限遠合焦時の、第3レンズ群G3の物体側の面から第2レンズ群G2による開口絞りの結像位置までの距離を大きくすればよい。   As described above, the inner focus optical system according to the present invention is premised on that autofocus by wobbling is possible. That is, the image height change rate during wobbling is small. For this purpose, it is only necessary to reduce the fluctuation of the chief ray height of the focus lens group due to the wobbling, and the image of the aperture stop by the second lens group G2 from the object side surface of the third lens group G3 when focusing on infinity. What is necessary is just to enlarge the distance to a position.

ウオブリングによる像高変動はウオブリングによる歪曲収差の変動で表すことができる。
松居吉哉著、レンズ設計法、共立出版P88によれば、3次の歪曲収差係数Vは以下の式で表される。
V=J・IV
これを展開すると以下になり、3次の歪曲収差係数Vは近軸主光線高H’の3乗に比例する。
(参考式1)
V=(H’・Q’)/(H・Q)・H・Δ(1/(n・s))+P・(H’・Q’)/(H・Q)
Image height variation due to wobbling can be represented by variation in distortion due to wobbling.
According to Yoshiya Matsui, lens design method, Kyoritsu Shuppan P88, the third-order distortion coefficient V is expressed by the following equation.
V = J ・ IV
When this is developed, the following is obtained, and the third-order distortion coefficient V is proportional to the cube of the paraxial principal ray height H ′.
(Reference formula 1)
V = (H ′ · Q ′) 3 / (H · Q) · H 2 · Δ (1 / (n · s)) + P · (H ′ · Q ′) / (H · Q)

これよりウオブリングによる歪曲収差の変動を少なくするには、ウオブリングによるフォーカスレンズ群の主光線高の変動を少なくすればよい。ここで物体距離無限遠時の第3レンズ群G3の物体側の面を基準とした、第2レンズ群G2による開口絞りの像の位置、およびフォーカスレンズ群である第3レンズ群G3の横倍率、フォーカスレンズ群より後方のレンズ群である第4レンズ群G4の横倍率、およびフォーカスレンズ群における主光線高から、ウオブリングによるフォーカスレンズ群の主光線高の変動Δhは以下の式で表される。
(参考式2)
Δh=h’−h=h・Δs/M4×(1−M3
ただし、
FcEntp:無限遠合焦時の、第3レンズ群G3の物体側の面を基準とした、第2レンズ群G2による開口絞りの結像位置
Δs:ウオブリング時の像面移動量
h:距離無限遠時のフォーカスレンズ群における主光線高
h’:ウオブリング時のフォーカスレンズ群における主光線高
M3:物体距離無限遠時の第3レンズ群G3の横倍率
M4:物体距離無限遠時の第4レンズ群G4の横倍率
In order to reduce the variation in distortion due to the wobbling, the variation in the principal ray height of the focus lens group due to the wobbling may be reduced. Here, the position of the image of the aperture stop by the second lens group G2 and the lateral magnification of the third lens group G3, which is the focus lens group, with respect to the object side surface of the third lens group G3 at the infinite object distance From the lateral magnification of the fourth lens group G4, which is the lens group behind the focus lens group, and the principal ray height in the focus lens group, the variation Δh in the principal ray height of the focus lens group due to wobbling is expressed by the following equation. .
(Reference formula 2)
Δh = h′−h = h · Δs / M4 2 × (1-M3 2 )
However,
FcEntp: The image forming position Δs of the aperture stop by the second lens group G2 with respect to the object side surface of the third lens group G3 at the time of focusing on infinity: Image plane movement amount h at the time of wobbling: Distance infinite Chief ray height h ′ in the focus lens group at the time: chief ray height M3 in the focus lens group at the time of wobbling: lateral magnification M4 of the third lens group G3 at infinity at the object distance: fourth lens group at infinity at the object distance G4 horizontal magnification

条件式(1)において、第1レンズ群G1と無限遠合焦時の全系の焦点距離の比を適切に規定することで、広い画角の光線の入射角を緩和させ、後続の光学系に入射させることが可能となる。   In conditional expression (1), by appropriately defining the ratio of the focal lengths of the first lens group G1 and the entire system at the time of focusing on infinity, the incident angle of light rays with a wide angle of view is relaxed, and the subsequent optical system It becomes possible to make it enter.

条件式(1)の上限を超え第1レンズ群G1の負の屈折力が大きくなると、第1レンズ群G1内の凹面の曲率がさらに大きくなり負の球面収差の発生要因となる。また第2レンズ群G2への軸上光線の入射角および光線高が大きくなるため高次収差の発生要因となり、収差補正が困難になる。またバックフォーカスが長くなるため光学系全長も長くなる。一方、条件式(1)の下限を超え第1レンズ群G1の負の屈折力が小さくなると、開口絞りを通過する主光線の傾角の緩和がなされないため、第2レンズ群G2以降の周辺光線の光線高が高くなり上光線のコマフレアの補正が困難になる。   If the upper limit of conditional expression (1) is exceeded and the negative refractive power of the first lens group G1 is increased, the curvature of the concave surface in the first lens group G1 is further increased, which causes negative spherical aberration. Further, since the incident angle and the ray height of the axial ray on the second lens group G2 are increased, it becomes a cause of occurrence of higher-order aberrations and it becomes difficult to correct the aberration. Further, since the back focus becomes longer, the entire length of the optical system becomes longer. On the other hand, when the lower limit of conditional expression (1) is exceeded and the negative refractive power of the first lens group G1 becomes small, the inclination of the principal ray that passes through the aperture stop is not relaxed, so the peripheral rays after the second lens group G2 The height of the light beam becomes higher, and it becomes difficult to correct the coma flare of the upper light beam.

なお、条件式(1)について、望ましくはその下限値を−5.0に、また上限値を−3.25に限定することで、前述の効果をより確実にすることができる。   Regarding conditional expression (1), the lower limit value is desirably limited to −5.0, and the upper limit value is desirably limited to −3.25, whereby the above-described effect can be further ensured.

条件式(2)において、フォーカスレンズ群である第3レンズ群G3と第1レンズ群G1の焦点距離の比を適切に規定することで、フォーカス時の収差変動を抑えることが可能となる。   In the conditional expression (2), by appropriately defining the ratio of the focal lengths of the third lens group G3, which is the focus lens group, and the first lens group G1, it is possible to suppress aberration fluctuations during focusing.

条件式(2)の上限を超え第3レンズ群G3の負の屈折力が相対的に大きくなると、フォーカス時の第3レンズ群G3の移動量が小さくなり、スペース的には有利になるが、フォーカス時の球面収差と非点収差の変動を同時に補正することが困難になる。一方、条件式(2)の下限を超え第3レンズ群G3の負の屈折力が相対的に小さくなると、フォーカス時の第3レンズ群G3の移動量が大きくなり、光学系全長が大きくなる。またウオブリング時の振幅量を大きくしなければならず、アクチュエータへの負荷がかかるため好ましくない。   If the upper limit of conditional expression (2) is exceeded and the negative refractive power of the third lens group G3 becomes relatively large, the amount of movement of the third lens group G3 during focusing becomes small, which is advantageous in terms of space. It becomes difficult to simultaneously correct the variation in spherical aberration and astigmatism during focusing. On the other hand, if the lower limit of conditional expression (2) is exceeded and the negative refractive power of the third lens group G3 becomes relatively small, the amount of movement of the third lens group G3 at the time of focusing increases, and the total length of the optical system increases. Further, it is not preferable because the amount of amplitude at the time of wobbling must be increased and a load is applied to the actuator.

なお、条件式(2)について、望ましくはその下限値を−4.3に、また上限値を−3.2に限定することで、前述の効果をより確実にすることができる。   Regarding conditional expression (2), the lower limit value is desirably limited to −4.3, and the upper limit value is desirably limited to −3.2, whereby the above-described effect can be further ensured.

条件式(3)において、第2レンズ群G2と第1レンズ群G1の焦点距離の比を適切に規定することで、広い画角を保持し、かつ大口径化が可能となる。   In the conditional expression (3), by appropriately defining the ratio of the focal lengths of the second lens group G2 and the first lens group G1, a wide angle of view can be maintained and a large aperture can be achieved.

条件式(3)の上限を超え第2レンズ群G2の正の屈折力が相対的に大きくなる、あるいは第1レンズ群G1の負の屈折力が小さくなると、大口径化時の球面収差とコマ収差の補正が困難になる。一方、条件式(3)の下限を超え第2レンズ群G2の正の屈折力が相対的に小さくなる、あるいは第1レンズ群G1の負の屈折力が大きくなると、フォーカスレンズ群である第3レンズ群G3の負の屈折力を弱くしなければ全体の屈折力を確保できない。このためフォーカス時の第3レンズ群G3の移動量が大きくなり、光学系全長も長くなるので好ましくない。   When the upper limit of conditional expression (3) is exceeded and the positive refractive power of the second lens group G2 becomes relatively large, or the negative refractive power of the first lens group G1 becomes small, spherical aberration and coma at the time of increasing the diameter are increased. It becomes difficult to correct aberrations. On the other hand, if the lower limit of the conditional expression (3) is exceeded and the positive refractive power of the second lens group G2 becomes relatively small, or the negative refractive power of the first lens group G1 becomes large, the third lens that is the focus lens group. The overall refractive power cannot be secured unless the negative refractive power of the lens group G3 is weakened. For this reason, the amount of movement of the third lens group G3 at the time of focusing becomes large and the entire length of the optical system becomes long, which is not preferable.

なお、条件式(3)について、望ましくはその下限値を−0.52に、また上限値を−0.34に限定することで、前述の効果をより確実にすることができる。   Regarding conditional expression (3), the lower limit value is desirably limited to −0.52 and the upper limit value is desirably limited to −0.34, whereby the above-described effect can be further ensured.

さらに本発明の実施例のインナーフォーカス光学系では、無限遠合焦時の、第3レンズ群G3の物体側の面を基準とし、第2レンズ群G2による開口絞りの結像位置をFcEntpとした時、以下に示す条件式を満足することを特徴とする。
(4)0.5<FcEntp/f3<0.95
(5)FcEntp/f<−2.0
Further, in the inner focus optical system according to the embodiment of the present invention, the imaging position of the aperture stop by the second lens group G2 is FcEntp with the object side surface of the third lens group G3 at the time of focusing on infinity as a reference. In this case, the following conditional expression is satisfied.
(4) 0.5 <FcEntp / f3 <0.95
(5) FcEntp / f <−2.0

条件式(4)、(5)において、無限遠合焦時の第3レンズ群G3の物体側の面を基準とした第2レンズ群G2による開口絞りの結像位置と第3レンズ群G3の焦点距離の比、および、全系の無限遠合焦状態での焦点距離と無限遠合焦時の第3レンズ群G3の物体側の面を基準とした第2レンズ群G2による開口絞りの結像位置との比を適切に規定することで、ウオブリング時の像高変動を抑制することが可能となる。   In conditional expressions (4) and (5), the imaging position of the aperture stop by the second lens group G2 with respect to the object side surface of the third lens group G3 at the time of focusing on infinity and the third lens group G3 The ratio of the focal length and the aperture stop by the second lens group G2 based on the focal length of the entire system at the infinite focus state and the object side surface of the third lens group G3 at the infinite focus state. By appropriately defining the ratio to the image position, it is possible to suppress image height fluctuations during wobbling.

条件式(4)の上限を超え、無限遠合焦時の第3レンズ群G3の物体側の面から第2レンズ群G2による開口絞りの結像位置までの距離が大きくなると、光学系全長が長くなるため好ましくない。また第3レンズ群G3の負の屈折力が大きくなると、フォーカス時の第3レンズ群G3の移動量が小さくなり、スペース的には有利になるが、フォーカス時の球面収差と非点収差の変動を同時に補正することが困難になる。一方、条件式(4)の下限を超え、無限遠合焦時の第3レンズ群G3の物体側の面から第2レンズ群G2による開口絞りの結像位置までの距離が小さくなると、ウオブリング時のフォーカスレンズ群主光線高の変動が大きくなるため、ウオブリング時の像高変動を抑制することが困難になる。   If the upper limit of conditional expression (4) is exceeded and the distance from the object side surface of the third lens group G3 at the time of focusing on infinity to the imaging position of the aperture stop by the second lens group G2 increases, the total length of the optical system becomes larger. Since it becomes long, it is not preferable. If the negative refractive power of the third lens group G3 is increased, the amount of movement of the third lens group G3 during focusing is reduced, which is advantageous in terms of space, but fluctuations in spherical aberration and astigmatism during focusing. It becomes difficult to correct simultaneously. On the other hand, if the lower limit of the conditional expression (4) is exceeded and the distance from the object side surface of the third lens group G3 to the image forming position of the aperture stop by the second lens group G2 at the time of focusing on infinity becomes small, the wobbling time Since the fluctuation of the principal ray height of the focus lens group becomes large, it becomes difficult to suppress the fluctuation of the image height during wobbling.

また条件式(5)の上限を超え、無限遠合焦時の第3レンズ群G3の物体側の面から第2レンズ群G2による開口絞りの結像位置までの距離と全系の焦点距離の比が大きくなると、同様に、ウオブリング時の像高変動を抑制することが困難になる。   Moreover, the upper limit of conditional expression (5) is exceeded, and the distance from the object side surface of the third lens group G3 to the imaging position of the aperture stop by the second lens group G2 and the focal length of the entire system when focusing on infinity As the ratio increases, similarly, it becomes difficult to suppress fluctuations in image height during wobbling.

なお、条件式(4)について、望ましくはその下限値を0.68に、また上限値を0.87に限定することで、前述の効果をより確実にすることができる。   Regarding conditional expression (4), the lower limit value is desirably limited to 0.68, and the upper limit value is preferably limited to 0.87, whereby the above-described effect can be further ensured.

また、条件式(5)について、望ましくはその上限値を−2.4に限定することで、前述の効果をより確実にすることができる。   Regarding conditional expression (5), the above-mentioned effect can be made more reliable by desirably limiting the upper limit value to -2.4.

さらに本発明の実施例のインナーフォーカス光学系では、開口絞りの像面側に、負の屈折力のレンズLa、正の屈折力のレンズLb、負の屈折力のレンズLcの3枚が接合された接合レンズを有し、前記レンズLa、Lb、Lcの接合レンズの焦点距離、合成厚が以下の条件を満足することを特徴とする。
(6)−0.15<f/fabc<0.06
(7)0.5<OALabc/f<1.5
ただし
fabc : La,Lb,Lcの接合レンズの焦点距離
OALabc : La,Lb,Lcの接合レンズの合成厚
Further, in the inner focus optical system of the embodiment of the present invention, three lenses of a negative refractive power lens La, a positive refractive power lens Lb, and a negative refractive power lens Lc are cemented on the image plane side of the aperture stop. The focal length and the combined thickness of the cemented lenses of the lenses La, Lb, and Lc satisfy the following conditions.
(6) -0.15 <f / fabc <0.06
(7) 0.5 <OALAbc / f <1.5
However, the focal length of the cemented lens of fabc: La, Lb, and Lc OALabc: the combined thickness of the cemented lens of La, Lb, and Lc

条件式(6)において、無限遠合焦時の全系の焦点距離と3枚接合された接合レンズの焦点距離の比を適切に規定することにより軸上色収差、像面湾曲、非点収差の補正およびバランス取りを可能とする。   In conditional expression (6), by appropriately defining the ratio of the focal length of the entire system at the time of focusing on infinity and the focal length of the cemented lens that is joined by three lenses, axial chromatic aberration, field curvature, and astigmatism are reduced. Enables correction and balancing.

また条件式(7)において前記3枚接合された接合レンズの合成厚と無限遠合焦時の全系の焦点距離の比を適切に規定することにより、条件式(6)と相俟って、フォーカス群から見た開口絞りの結像位置を遠方に投影させることにより、全長を大きくすることなく、ウオブリング時の像高変動を抑制することが可能となる。   In addition, in conditional expression (7), by appropriately defining the ratio of the combined thickness of the cemented lenses joined by the three lenses and the focal length of the entire system when focused at infinity, in combination with conditional expression (6) By projecting the imaging position of the aperture stop as viewed from the focus group to the distance, it is possible to suppress fluctuations in image height during wobbling without increasing the total length.

条件式(6)の上限を超え、3枚接合の接合レンズの正の屈折力が相対的に強くなると、ペッツバール和が正に偏移し、像面湾曲、非点収差が悪化し好ましくない。一方、条件式(6)の下限を超え、3枚接合の接合レンズの負の屈折力が相対的に強くなると、3枚接合された接合レンズの像面側に続く正のレンズ成分の屈折力を強くしなければ、フォーカスレンズ群のマージナル光線の光線高が高くなり、フォーカス時の収差変動を抑えられない。また前記正のレンズ成分の屈折力を強くすると球面収差がアンダーになり大口径化が困難になる。また、本明細書において「レンズ成分」とは、単レンズや接合レンズやレンズの集合を含む広い概念である。従って、1つのレンズ成分とは、その最も広い概念においては1つのレンズ群と同じである。   If the upper limit of conditional expression (6) is exceeded and the positive refractive power of the cemented lens with three cemented lenses becomes relatively strong, the Petzval sum shifts positively, and field curvature and astigmatism deteriorate, which is not preferable. On the other hand, if the lower limit of conditional expression (6) is exceeded and the negative refractive power of the three-piece cemented lens becomes relatively strong, the refractive power of the positive lens component following the image plane side of the three-piece cemented lens If is not strengthened, the height of the marginal ray of the focus lens group becomes high, and aberration fluctuations during focusing cannot be suppressed. Further, when the refractive power of the positive lens component is increased, the spherical aberration becomes under and it becomes difficult to increase the diameter. Further, in this specification, the “lens component” is a broad concept including a single lens, a cemented lens, and a group of lenses. Thus, one lens component is the same as one lens group in its broadest concept.

また、条件式(7)の上限を超え、3枚接合された接合レンズの合成厚が大きくなると、射出瞳が遠方に射影されるため、像高変動を抑制する効果は上がるが、平行平面板の効果により球面収差がアンダーに、また非点収差がオーバーに倒れるため、大口径化を達成できない。一方、条件式(7)の下限を超え、3枚接合された接合レンズの合成厚が小さくなると、射出瞳が像側に近づくため、像高変動を抑制する効果は弱くなり、ウオブリング時の像高変動を抑えることが困難になる。また球面収差がオーバーに、また非点収差がアンダーに倒れ好ましくない。   If the combined thickness of the three cemented lenses exceeds the upper limit of conditional expression (7), the exit pupil is projected far away, so that the effect of suppressing fluctuations in image height increases, but the parallel plane plate As a result, the spherical aberration falls under and the astigmatism falls over, so that a large aperture cannot be achieved. On the other hand, if the lower limit of conditional expression (7) is exceeded and the combined thickness of the three cemented lenses decreases, the exit pupil approaches the image side, so the effect of suppressing fluctuations in image height is weakened. It becomes difficult to suppress high fluctuations. Further, the spherical aberration is over and the astigmatism is over, which is not preferable.

なお、条件式(6)について、望ましくはその下限値を−0.10に、また上限値を0.03に限定することで、前述の効果をより確実にすることができる。
また、条件式(7)について、望ましくはその下限値を0.66に、また上限値を1.15に限定することで、前述の効果をより確実にすることができる。
Regarding conditional expression (6), the lower limit value is desirably limited to -0.10, and the upper limit value is preferably limited to 0.03, whereby the above-described effect can be further ensured.
Regarding conditional expression (7), the lower limit value is desirably limited to 0.66 and the upper limit value is preferably limited to 1.15, whereby the above-described effect can be further ensured.

さらに本発明の実施例のインナーフォーカス光学系では、以下に示す条件式を満足することを特徴とする。
(8)−1.3<M4×(1−M3)<−0.5
ただし、
M3:物体距離無限遠時の第3レンズ群G3の横倍率
M4:物体距離無限遠時の第4レンズ群G4の横倍率
Furthermore, the inner focus optical system of the embodiment of the present invention is characterized in that the following conditional expressions are satisfied.
(8) -1.3 <M4 2 × (1-M3 2 ) <− 0.5
However,
M3: Lateral magnification of the third lens group G3 when the object distance is infinity M4: Lateral magnification of the fourth lens group G4 when the object distance is infinity

条件式(8)は第3レンズ群G3がフォーカス時に移動した時の結像面の敏感度を規定する。この値を適切に規定することにより、AF合焦範囲内にフォーカスレンズ群を駆動制御することが可能となる。また、参考式(2)に示すように、この値がゼロに近づくほどウオブリングによるフォーカスレンズ群の主光線高の変動Δhが大きくなるため適切な範囲が必要となる。   Conditional expression (8) defines the sensitivity of the image plane when the third lens group G3 moves during focusing. By appropriately defining this value, it becomes possible to drive and control the focus lens group within the AF focusing range. Further, as shown in the reference formula (2), the fluctuation Δh of the principal ray height of the focus lens group due to the wobbling increases as this value approaches zero, so that an appropriate range is necessary.

条件式(8)の上限を超えると、ウオブリングによるフォーカスレンズ群の主光線高の変動Δhが大きくなるため、像高変動を抑制する効果は弱くなり、ウオブリング時の像高変動を抑えることが困難になる。一方、条件式(8)の下限を超えると、フォーカスレンズ群の移動量が少なくなるため、フォーカスレンズ群の微少な動きで結像面が大きく動き、AF合焦範囲内にフォーカスレンズ群である第3レンズ群G3を駆動制御することが困難になる。   If the upper limit of conditional expression (8) is exceeded, the chief ray height variation Δh of the focus lens group due to wobbling increases, so the effect of suppressing the image height variation becomes weak, and it is difficult to suppress image height variation during wobbling. become. On the other hand, if the lower limit of conditional expression (8) is exceeded, the amount of movement of the focus lens group decreases, so that the imaging surface moves greatly with a slight movement of the focus lens group, and the focus lens group is within the AF focusing range. It becomes difficult to drive and control the third lens group G3.

なお、条件式(8)について、望ましくはその下限値を−1.0に、また上限値を−0.7に限定することで、前述の効果をより確実にすることができる。   Regarding conditional expression (8), the lower limit value is desirably limited to -1.0, and the upper limit value is desirably limited to -0.7, whereby the above-described effect can be further ensured.

本発明のインナーフォーカス光学系では、以下の段落0054に記載した構成を伴うと、より効果的である。   The inner focus optical system of the present invention is more effective with the configuration described in the following paragraph 0054.

かかる構成とは、本発明の実施例のインナーフォーカス光学系では第3レンズ群G3を単レンズで構成しているが、フォーカス駆動するアクチュエータのパワーに余裕があれば、これを接合レンズにすることによってフォーカスレンズ群で色収差補正を行うというものである。これにより、フォーカス移動による色収差の変動を抑制することも可能である。   With this configuration, in the inner focus optical system according to the embodiment of the present invention, the third lens group G3 is constituted by a single lens. However, if there is a margin in the power of the actuator for focus drive, this is used as a cemented lens. Thus, the chromatic aberration is corrected by the focus lens group. As a result, it is also possible to suppress fluctuations in chromatic aberration due to focus movement.

次に、本発明のインナーフォーカス光学系に係る各実施例のレンズ構成と具体的な数値データについて説明する。
尚、以下の説明ではレンズ構成を物体側から像側の順番で記載する。
Next, the lens configuration and specific numerical data of each example according to the inner focus optical system of the present invention will be described.
In the following description, the lens configuration is described in order from the object side to the image side.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線に対するアッベ数を示す。またBFはバックフォーカスを表す。   In [Surface Data], the surface number is the number of the lens surface or aperture stop counted from the object side, r is the radius of curvature of each surface, d is the distance between the surfaces, and nd is for the d-line (wavelength λ = 587.56 nm). The refractive index, νd, indicates the Abbe number with respect to the d line. BF represents back focus.

面番号を付した(開口絞り)には、平面または開口絞りに対する曲率半径∞(無限大)を記入している。   In the surface number (aperture stop), the radius of curvature ∞ (infinite) with respect to the plane or aperture stop is entered.

[非球面データ]には[面データ]において*を付したレンズ面の非球面形状を与える各係数値を示している。非球面の形状は、光軸に直交する方向への変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、コーニック係数をK、4、6、8、10次の非球面係数をそれぞれA4、A6、A8、A10、と置くとき、非球面の座標が以下の式で表わされるものとする。

Figure 2017078752
In [Aspherical data], each coefficient value giving the aspherical shape of the lens surface marked with * in [Surface data] is shown. The shape of the aspheric surface is such that the displacement in the direction orthogonal to the optical axis is y, the displacement (sag amount) in the optical axis direction from the intersection of the aspheric surface and the optical axis is z, the conic coefficient is K, 4, 6, 8, When tenth-order aspheric coefficients are set as A4, A6, A8, and A10, respectively, the coordinates of the aspheric surface are expressed by the following equations.
Figure 2017078752

[各種データ]には、焦点距離等の値を示している。   [Various data] shows values such as focal length.

[可変間隔データ]には、各撮影距離状態における可変間隔及びBF(バックフォーカス)の値を示している。   [Variable interval data] indicates the value of the variable interval and BF (back focus) in each shooting distance state.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。   [Lens Group Data] indicates the surface number of the most object side constituting each lens group and the combined focal length of the entire group.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。   In all the values of the following specifications, the focal length f, the radius of curvature r, the lens surface interval d, and other length units described are in millimeters (mm) unless otherwise specified. In the system, the same optical performance can be obtained even in proportional expansion and proportional reduction, and the present invention is not limited to this.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。   In the aberration diagrams corresponding to each example, d, g, and C represent d-line, g-line, and C-line, respectively, and ΔS and ΔM represent sagittal image plane and meridional image plane, respectively.

さらに図1、8、15、22、29、36、43に示すレンズ構成図において、Sは開口絞り、Iは像面、FLは光学フィルター、中心を通る一点鎖線は光軸である。   Further, in the lens configuration diagrams shown in FIGS. 1, 8, 15, 22, 29, 36, and 43, S is an aperture stop, I is an image plane, FL is an optical filter, and an alternate long and short dash line through the center is an optical axis.

図1は、本発明の実施例1のインナーフォーカス光学系のレンズ構成図である。   FIG. 1 is a lens configuration diagram of an inner focus optical system according to Example 1 of the present invention.

図1のインナーフォーカス光学系のレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とから構成される。   The lens of the inner focus optical system in FIG. 1 includes, in order from the object side to the image side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 is composed of a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸レンズから成る接合レンズと物体側に凹面を向けた負メニスカスレンズと物体側に凹面を向けた正メニスカスレンズとから成る接合レンズで構成される。   The first lens group G1 includes a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side. And a cemented lens composed of a negative meniscus lens having a convex surface facing the object side and a biconvex lens, a negative meniscus lens having a concave surface facing the object side, and a positive meniscus lens having a concave surface facing the object side.

開口絞りSは第1レンズ群G1と第2レンズ群G2の間に配置されている。   The aperture stop S is disposed between the first lens group G1 and the second lens group G2.

第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズLaと両凸レンズLbと物体側に凹面を向けた負メニスカスレンズLcからなる3枚接合レンズと両凸レンズと両凸レンズで構成される。   The second lens group G2 includes a three-piece cemented lens including a negative meniscus lens La having a convex surface facing the object side, a biconvex lens Lb, and a negative meniscus lens Lc having a concave surface facing the object side, a biconvex lens, and a biconvex lens. .

第3レンズ群G3は、両凹レンズで構成され、第3レンズ群G3を光軸に沿って像面側へ移動させることにより無限遠物体から近距離物体へのフォーカシングを行っている。   The third lens group G3 is composed of a biconcave lens, and performs focusing from an object at infinity to a short distance object by moving the third lens group G3 along the optical axis toward the image plane side.

第4レンズ群G4は、物体側が凸面で非球面からなる両凸レンズで構成される。   The fourth lens group G4 includes a biconvex lens having a convex surface on the object side and an aspheric surface.

光学フィルターFLは第4レンズ群G4と像面Iとの間に配置されている。   The optical filter FL is disposed between the fourth lens group G4 and the image plane I.

続いて、以下に実施例1に係るインナーフォーカス光学系の諸元値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 111.9995 3.4734 1.51680 64.20
2 1524.0793 0.2000
3 29.0201 1.9987 1.49700 81.61
4 13.4534 4.0281
5 22.5454 1.0000 1.49700 81.61
6 11.6487 4.3971
7 46.6011 1.0000 1.49700 81.61
8 16.6206 2.2002
9 77.0772 0.8000 1.71300 53.94
10 10.1427 5.7221 1.72825 28.32
11 -149.6735 2.9680
12 -12.6023 1.8746 1.54814 45.82
13 -83.6671 3.0363 1.91082 35.25
14 -18.6796 0.2562
15(開口絞り) ∞ 3.0577
16 91.3877 0.8000 1.92286 20.88
17 20.2405 6.5216 1.49700 81.61
18 -14.4992 0.8000 1.92286 20.88
19 -28.2236 0.1263
20 106.8761 4.3352 1.49700 81.61
21 -21.9850 0.1263
22 55.6039 2.2692 1.92286 20.88
23 -185.7095 (d23)
24 -193.2853 0.8000 1.48749 70.44
25 24.3139 (d25)
26* 61.3656 3.6503 1.59349 67.00
27 -29.5797 0.1500
28 ∞ 4.2000 1.51680 64.20
29 ∞ (BF)
像面 ∞

[非球面データ]
26面
K 0.0000
A4 -2.08326E-05
A6 7.34646E-08
A8 -5.57038E-10
A10 1.83771E-12
[各種データ]
INF 40倍 0.2m
焦点距離 12.35 12.35 12.32
Fナンバー 1.47 1.48 1.50
全画角2ω 88.12 88.02 87.77
像高Y 10.82 10.82 10.82
レンズ全長 86.00 86.00 86.00
[可変間隔データ]
INF 40倍 0.2m
d0 ∞ 477.0000 114.0000

d23 3.0000 3.4324 4.6496
d25 6.5127 6.0802 4.8631
BF 16.6959 16.6960 16.6959
[レンズ群データ]
群 始面 焦点距離
G1 1 -48.26
G2 16 22.25
G3 24 -44.25
G4 26 34.14
Subsequently, specification values of the inner focus optical system according to Example 1 are shown below.
Numerical example 1
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 111.9995 3.4734 1.51680 64.20
2 1524.0793 0.2000
3 29.0201 1.9987 1.49700 81.61
4 13.4534 4.0281
5 22.5454 1.0000 1.49700 81.61
6 11.6487 4.3971
7 46.6011 1.0000 1.49700 81.61
8 16.6206 2.2002
9 77.0772 0.8000 1.71300 53.94
10 10.1427 5.7221 1.72825 28.32
11 -149.6735 2.9680
12 -12.6023 1.8746 1.54814 45.82
13 -83.6671 3.0363 1.91082 35.25
14 -18.6796 0.2562
15 (Aperture stop) ∞ 3.0577
16 91.3877 0.8000 1.92286 20.88
17 20.2405 6.5216 1.49700 81.61
18 -14.4992 0.8000 1.92286 20.88
19 -28.2236 0.1263
20 106.8761 4.3352 1.49700 81.61
21 -21.9850 0.1263
22 55.6039 2.2692 1.92286 20.88
23 -185.7095 (d23)
24 -193.2853 0.8000 1.48749 70.44
25 24.3139 (d25)
26 * 61.3656 3.6503 1.59349 67.00
27 -29.5797 0.1500
28 ∞ 4.2000 1.51680 64.20
29 ∞ (BF)
Image plane ∞

[Aspherical data]
26
K 0.0000
A4 -2.08326E-05
A6 7.34646E-08
A8 -5.57038E-10
A10 1.83771E-12
[Various data]
INF 40 times 0.2m
Focal length 12.35 12.35 12.32
F number 1.47 1.48 1.50
Full angle of view 2ω 88.12 88.02 87.77
Image height Y 10.82 10.82 10.82
Total lens length 86.00 86.00 86.00
[Variable interval data]
INF 40 times 0.2m
d0 ∞ 477.0000 114.0000

d23 3.0000 3.4324 4.6496
d25 6.5127 6.0802 4.8631
BF 16.6959 16.6960 16.6959
[Lens group data]
Group Start surface Focal length
G1 1 -48.26
G2 16 22.25
G3 24 -44.25
G4 26 34.14

図8は、本発明の実施例2のインナーフォーカス光学系のレンズ構成図である。   FIG. 8 is a lens configuration diagram of the inner focus optical system according to Example 2 of the present invention.

図8のインナーフォーカス光学系のレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とから構成される。   The lenses of the inner focus optical system in FIG. 8 are, in order from the object side to the image side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 is composed of a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向け、像側の面が非球面から成る負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズと物体側に凹面を向けた正メニスカスレンズと両凹レンズと両凸レンズから成る接合レンズで構成される。   The first lens group G1 includes a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and an image side surface composed of an aspherical surface, and an object A positive meniscus lens having a convex surface facing the side, a positive meniscus lens having a concave surface facing the object side, a cemented lens made up of a biconcave lens and a biconvex lens.

開口絞りSは第1レンズ群G1と第2レンズ群G2の間に配置されている。   The aperture stop S is disposed between the first lens group G1 and the second lens group G2.

第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズLaと両凸レンズLbと物体側に凹面を向けた負メニスカスレンズLcからなる3枚接合レンズと両凸レンズと像側の面が非球面から成る両凸レンズで構成される。   The second lens group G2 includes a three-lens cemented lens including a negative meniscus lens La and a biconvex lens Lb having a convex surface facing the object side, and a negative meniscus lens Lc having a concave surface facing the object side, and a biconvex lens and the image side surface being non-surface. It consists of a biconvex lens consisting of a spherical surface.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズで構成され、第3レンズ群G3を光軸に沿って像面側へ移動させることにより無限遠物体から近距離物体へのフォーカシングを行っている。   The third lens group G3 is composed of a negative meniscus lens having a convex surface directed toward the object side. The third lens group G3 is moved from the infinity object to the short distance object by moving the third lens group G3 along the optical axis toward the image plane side. It is carried out.

第4レンズ群G4は、物体側が凸面で非球面からなる両凸レンズで構成される。   The fourth lens group G4 includes a biconvex lens having a convex surface on the object side and an aspheric surface.

光学フィルターFLは第4レンズ群G4と像面Iとの間に配置されている。   The optical filter FL is disposed between the fourth lens group G4 and the image plane I.

続いて、以下に実施例2に係るインナーフォーカス光学系の諸元値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 61.9700 3.4526 1.51680 64.20
2 195.1199 0.2000
3 37.6564 1.5000 1.49700 81.61
4 12.5572 5.3354
5 39.4476 1.5000 1.59349 67.00
6* 12.1147 4.2353
7 60.0604 1.6538 1.84666 23.78
8 ∞ 1.6987
9 -23.8074 8.0047 1.59349 67.00
10 -20.2140 2.5861
11 -15.7726 0.8000 1.59270 35.45
12 28.6832 3.5481 1.84666 23.78
13 -35.0580 0.5000
14(開口絞り) ∞ 2.9894
15 89.1013 0.8000 1.80610 33.27
16 14.2443 9.7939 1.59349 67.00
17 -14.0715 0.8000 1.80610 33.27
18 -41.7388 0.1500
19 36.4960 5.4332 1.59349 67.00
20 -26.8525 0.1263
21 225.8417 2.4607 1.59349 67.00
22* -64.6965 (d22)
23 70.4259 0.8000 1.48749 70.44
24 18.1604 (d24)
25 84.0917 3.5125 1.43700 95.10
26 -30.7754 0.1500
27 ∞ 4.2000 1.51680 64.20
28 ∞ (BF)
像面 ∞
[非球面データ]
6面 22面
K 0.0000 0.0000
A4 -1.45261E-05 3.03245E-05
A6 -3.19713E-07 -2.89377E-08
A8 2.18843E-09 5.44612E-11
A10 -2.26972E-11 2.16299E-13
[各種データ]
INF 40倍 0.2m
焦点距離 12.33 12.29 12.15
Fナンバー 1.47 1.47 1.47
全画角2ω 88.70 88.69 88.68
像高Y 10.82 10.82 10.82
レンズ全長 89.64 89.64 89.64
[可変間隔データ]
INF 40倍 0.2m
d0 ∞ 475.3552 110.3552
d22 2.0000 2.3791 3.4852
d24 5.4424 5.0633 3.9572
BF 15.9715 15.9715 15.9715
[レンズ群データ]
群 始面 焦点距離
G1 1 -41.81
G2 15 20.61
G3 23 -50.45
G4 25 52.04
Subsequently, specification values of the inner focus optical system according to Example 2 are shown below.
Numerical example 2
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 61.9700 3.4526 1.51680 64.20
2 195.1199 0.2000
3 37.6564 1.5000 1.49700 81.61
4 12.5572 5.3354
5 39.4476 1.5000 1.59349 67.00
6 * 12.1147 4.2353
7 60.0604 1.6538 1.84666 23.78
8 ∞ 1.6987
9 -23.8074 8.0047 1.59349 67.00
10 -20.2140 2.5861
11 -15.7726 0.8000 1.59270 35.45
12 28.6832 3.5481 1.84666 23.78
13 -35.0580 0.5000
14 (Aperture stop) ∞ 2.9894
15 89.1013 0.8000 1.80610 33.27
16 14.2443 9.7939 1.59349 67.00
17 -14.0715 0.8000 1.80610 33.27
18 -41.7388 0.1500
19 36.4960 5.4332 1.59349 67.00
20 -26.8525 0.1263
21 225.8417 2.4607 1.59349 67.00
22 * -64.6965 (d22)
23 70.4259 0.8000 1.48749 70.44
24 18.1604 (d24)
25 84.0917 3.5125 1.43700 95.10
26 -30.7754 0.1500
27 ∞ 4.2000 1.51680 64.20
28 ∞ (BF)
Image plane ∞
[Aspherical data]
6 faces 22 faces
K 0.0000 0.0000
A4 -1.45261E-05 3.03245E-05
A6 -3.19713E-07 -2.89377E-08
A8 2.18843E-09 5.44612E-11
A10 -2.26972E-11 2.16299E-13
[Various data]
INF 40 times 0.2m
Focal length 12.33 12.29 12.15
F number 1.47 1.47 1.47
Full angle of view 2ω 88.70 88.69 88.68
Image height Y 10.82 10.82 10.82
Total lens length 89.64 89.64 89.64
[Variable interval data]
INF 40 times 0.2m
d0 ∞ 475.3552 110.3552
d22 2.0000 2.3791 3.4852
d24 5.4424 5.0633 3.9572
BF 15.9715 15.9715 15.9715
[Lens group data]
Group Start surface Focal length
G1 1 -41.81
G2 15 20.61
G3 23 -50.45
G4 25 52.04

図15は、本発明の実施例3のインナーフォーカス光学系のレンズ構成図である。   FIG. 15 is a lens configuration diagram of the inner focus optical system according to Example 3 of the present invention.

図15のインナーフォーカス光学系のレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とから構成される。   The lens of the inner focus optical system in FIG. 15 includes, in order from the object side to the image side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 is composed of a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向け、像側の面が非球面から成る負メニスカスレンズと物体側が凸面を向けた凸平レンズと物体側に凹面を向けた正メニスカスレンズと両凹レンズと両凸レンズから成る3枚接合レンズで構成される。   The first lens group G1 includes a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and an image side surface composed of an aspherical surface, and an object Consists of a convex lens with a convex surface on the side, a positive meniscus lens with a concave surface on the object side, a biconcave lens, and a triple-junction lens.

開口絞りSは第1レンズ群G1と第2レンズ群G2の間に配置されている。   The aperture stop S is disposed between the first lens group G1 and the second lens group G2.

第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズLaと両凸レンズLbと物体側に凹面を向けた負メニスカスレンズLcからなる3枚接合レンズと両凸レンズと像側の面が非球面から成る両凸レンズで構成される。   The second lens group G2 includes a three-lens cemented lens including a negative meniscus lens La and a biconvex lens Lb having a convex surface facing the object side, and a negative meniscus lens Lc having a concave surface facing the object side, and a biconvex lens and the image side surface being non-surface. It consists of a biconvex lens consisting of a spherical surface.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズで構成され、第3レンズ群G3を光軸に沿って像面側へ移動させることにより無限遠物体から近距離物体へのフォーカシングを行っている。   The third lens group G3 is composed of a negative meniscus lens having a convex surface directed toward the object side. The third lens group G3 is moved from the infinity object to the short distance object by moving the third lens group G3 along the optical axis toward the image plane side. It is carried out.

第4レンズ群G4は、両凸レンズで構成される。   The fourth lens group G4 is composed of a biconvex lens.

光学フィルターFLは第4レンズ群G4と像面Iとの間に配置されている。   The optical filter FL is disposed between the fourth lens group G4 and the image plane I.

続いて、以下に実施例3に係るインナーフォーカス光学系の諸元値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 94.1558 3.2246 1.51680 64.20
2 1200.0836 0.2000
3 48.5901 1.5000 1.49700 81.61
4 12.8100 5.1784
5 34.9609 1.5000 1.59349 67.00
6* 11.5418 4.4503
7 45.1993 5.1086 1.84666 23.78
8 ∞ 1.7177
9 -21.9447 8.2345 1.55032 75.49
10 -13.2984 0.8000 1.64769 33.84
11 29.1932 3.9912 1.84666 23.78
12 -34.9133 0.5000
13(開口絞り) ∞ 2.4666
14 49.8054 0.8000 1.80610 33.27
15 13.9281 9.4493 1.59349 67.00
16 -17.6773 0.8000 1.80610 33.27
17 -60.0201 0.1500
18 30.2427 5.5071 1.59349 67.00
19 -28.5524 0.1263
20 1423.2341 2.1142 1.59349 67.00
21* -68.3139 (d21)
22 79.7955 0.8000 1.48749 70.44
23 16.9909 (d23)
24 123.6121 3.1473 1.43700 95.10
25 -27.8516 0.1500
26 ∞ 4.2000 1.51680 64.20
27 ∞ (BF)
像面 ∞
[非球面データ]
6面 21面
K 0.0000 0.0000
A4 -1.62249E-05 3.85559E-05
A6 -5.40875E-07 -2.75521E-08
A8 4.78586E-09 -2.94247E-11
A10 -3.92291E-11 6.00352E-13
[各種データ]
INF 40倍 0.2m
焦点距離 12.41 12.35 12.19
Fナンバー 1.46 1.46 1.46
全画角2ω 88.19 88.13 88.00
像高Y 10.82 10.82 10.82
レンズ全長 88.51 88.51 88.51
[可変間隔データ]
INF 40倍 0.2m
d0 ∞ 479.4899 111.4899
d21 2.0000 2.3345 3.3175
d23 5.1375 4.8029 3.8200
BF 15.2563 15.2563 15.2562
[レンズ群データ]
群 始面 焦点距離
G1 1 -44.55
G2 14 20.51
G3 22 -44.47
G4 24 52.34
Subsequently, specification values of the inner focus optical system according to Example 3 are shown below.
Numerical example 3
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 94.1558 3.2246 1.51680 64.20
2 1200.0836 0.2000
3 48.5901 1.5000 1.49700 81.61
4 12.8100 5.1784
5 34.9609 1.5000 1.59349 67.00
6 * 11.5418 4.4503
7 45.1993 5.1086 1.84666 23.78
8 ∞ 1.7177
9 -21.9447 8.2345 1.55032 75.49
10 -13.2984 0.8000 1.64769 33.84
11 29.1932 3.9912 1.84666 23.78
12 -34.9133 0.5000
13 (Aperture stop) ∞ 2.4666
14 49.8054 0.8000 1.80610 33.27
15 13.9281 9.4493 1.59349 67.00
16 -17.6773 0.8000 1.80610 33.27
17 -60.0201 0.1500
18 30.2427 5.5071 1.59349 67.00
19 -28.5524 0.1263
20 1423.2341 2.1142 1.59349 67.00
21 * -68.3139 (d21)
22 79.7955 0.8000 1.48749 70.44
23 16.9909 (d23)
24 123.6121 3.1473 1.43700 95.10
25 -27.8516 0.1500
26 ∞ 4.2000 1.51680 64.20
27 ∞ (BF)
Image plane ∞
[Aspherical data]
6 faces 21 faces
K 0.0000 0.0000
A4 -1.62249E-05 3.85559E-05
A6 -5.40875E-07 -2.75521E-08
A8 4.78586E-09 -2.94247E-11
A10 -3.92291E-11 6.00352E-13
[Various data]
INF 40 times 0.2m
Focal length 12.41 12.35 12.19
F number 1.46 1.46 1.46
Full angle of view 2ω 88.19 88.13 88.00
Image height Y 10.82 10.82 10.82
Total lens length 88.51 88.51 88.51
[Variable interval data]
INF 40 times 0.2m
d0 ∞ 479.4899 111.4899
d21 2.0000 2.3345 3.3175
d23 5.1375 4.8029 3.8200
BF 15.2563 15.2563 15.2562
[Lens group data]
Group Start surface Focal length
G1 1 -44.55
G2 14 20.51
G3 22 -44.47
G4 24 52.34

図22は、本発明の実施例4のインナーフォーカス光学系のレンズ構成図である。   FIG. 22 is a lens configuration diagram of the inner focus optical system according to Example 4 of the present invention.

図22のインナーフォーカス光学系のレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とから構成される。   The lenses of the inner focus optical system in FIG. 22 are, in order from the object side to the image side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 is composed of a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向け像側の面が非球面から成る負メニスカスレンズと両凸レンズと物体側に凹面を向けた正メニスカスレンズと両凹レンズと両凸レンズから成る3枚接合レンズで構成される。   The first lens group G1 includes a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side and an image-side surface made of an aspheric surface, and a biconvex lens And a positive meniscus lens having a concave surface facing the object side, and a three-piece cemented lens composed of a biconcave lens and a biconvex lens.

開口絞りSは第1レンズ群G1と第2レンズ群G2の間に配置されている。   The aperture stop S is disposed between the first lens group G1 and the second lens group G2.

第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズLaと両凸レンズLbと物体側に凹面を向けた負メニスカスレンズLcからなる3枚接合レンズと両凸レンズと像側の面が非球面から成る両凸レンズで構成される。   The second lens group G2 includes a three-lens cemented lens including a negative meniscus lens La and a biconvex lens Lb having a convex surface facing the object side, and a negative meniscus lens Lc having a concave surface facing the object side, and a biconvex lens and the image side surface being non-surface. It consists of a biconvex lens consisting of a spherical surface.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズで構成され、第3レンズ群G3を光軸に沿って像面側へ移動させることにより無限遠物体から近距離物体へのフォーカシングを行っている。   The third lens group G3 is composed of a negative meniscus lens having a convex surface directed toward the object side. The third lens group G3 is moved from the infinity object to the short distance object by moving the third lens group G3 along the optical axis toward the image plane side. It is carried out.

第4レンズ群G4は、両凸レンズで構成される。   The fourth lens group G4 is composed of a biconvex lens.

光学フィルターFLは第4レンズ群G4と像面Iとの間に配置されている。   The optical filter FL is disposed between the fourth lens group G4 and the image plane I.

続いて、以下に実施例4に係るインナーフォーカス光学系の諸元値を示す。
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 84.5939 3.2460 1.51680 64.20
2 797.6103 0.2000
3 66.8147 1.5000 1.49700 81.61
4 12.7398 5.9756
5 41.5116 1.5000 1.59349 67.00
6* 11.7656 4.3735
7 44.4076 2.0816 1.90366 31.31
8 -281.9358 2.3034
9 -22.9563 6.8396 1.55032 75.50
10 -13.2984 0.8000 1.64769 33.84
11 38.2640 3.3506 1.84666 23.78
12 -30.1874 4.3711
13(開口絞り) ∞ 2.5331
14 48.1820 1.4537 1.80610 33.27
15 13.4074 9.4570 1.59349 67.00
16 -14.9377 0.8000 1.80610 33.27
17 -138.4709 0.1500
18 41.8155 4.8143 1.77250 49.62
19 -27.4108 0.1263
20 159.3318 2.4083 1.59349 67.00
21* -71.0227 (d21)
22 149.4015 0.8000 1.48749 70.44
23 17.7368 (d23)
24 86.9239 3.5702 1.43700 95.10
25 -27.8966 0.1500
26 ∞ 4.2000 1.51680 64.20
27 ∞ (BF)
像面 ∞
[非球面データ]
6面 21面
K 0.0000 0.0000
A4 -3.57723E-05 3.68805E-05
A6 -4.18787E-07 -5.56128E-08
A8 2.34966E-09 3.15561E-10
A10 -3.33633E-11 -8.31317E-13
[各種データ]
INF 40倍 0.2m
焦点距離 12.22 12.17 12.01
Fナンバー 1.46 1.46 1.46
全画角2ω 89.26 89.23 89.17
像高Y 10.82 10.82 10.82
レンズ全長 88.51 88.51 88.51
[可変間隔データ]
INF 40倍 0.2m
d0 ∞ 471.4900 111.4901
d21 2.0000 2.3158 3.2195
d23 5.1062 4.7904 3.8867
BF 14.3993 14.3993 14.3993
[レンズ群データ]
群 始面 焦点距離
G1 1 -60.32
G2 14 20.39
G3 22 -41.37
G4 24 48.79
Subsequently, specification values of the inner focus optical system according to Example 4 are shown below.
Numerical example 4
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 84.5939 3.2460 1.51680 64.20
2 797.6103 0.2000
3 66.8147 1.5000 1.49700 81.61
4 12.7398 5.9756
5 41.5116 1.5000 1.59349 67.00
6 * 11.7656 4.3735
7 44.4076 2.0816 1.90366 31.31
8 -281.9358 2.3034
9 -22.9563 6.8396 1.55032 75.50
10 -13.2984 0.8000 1.64769 33.84
11 38.2640 3.3506 1.84666 23.78
12 -30.1874 4.3711
13 (Aperture stop) ∞ 2.5331
14 48.1820 1.4537 1.80610 33.27
15 13.4074 9.4570 1.59349 67.00
16 -14.9377 0.8000 1.80610 33.27
17 -138.4709 0.1500
18 41.8155 4.8143 1.77250 49.62
19 -27.4108 0.1263
20 159.3318 2.4083 1.59349 67.00
21 * -71.0227 (d21)
22 149.4015 0.8000 1.48749 70.44
23 17.7368 (d23)
24 86.9239 3.5702 1.43700 95.10
25 -27.8966 0.1500
26 ∞ 4.2000 1.51680 64.20
27 ∞ (BF)
Image plane ∞
[Aspherical data]
6 faces 21 faces
K 0.0000 0.0000
A4 -3.57723E-05 3.68805E-05
A6 -4.18787E-07 -5.56128E-08
A8 2.34966E-09 3.15561E-10
A10 -3.33633E-11 -8.31317E-13
[Various data]
INF 40 times 0.2m
Focal length 12.22 12.17 12.01
F number 1.46 1.46 1.46
Full angle of view 2ω 89.26 89.23 89.17
Image height Y 10.82 10.82 10.82
Total lens length 88.51 88.51 88.51
[Variable interval data]
INF 40 times 0.2m
d0 ∞ 471.4900 111.4901
d21 2.0000 2.3158 3.2195
d23 5.1062 4.7904 3.8867
BF 14.3993 14.3993 14.3993
[Lens group data]
Group Start surface Focal length
G1 1 -60.32
G2 14 20.39
G3 22 -41.37
G4 24 48.79

図29は、本発明の実施例5のインナーフォーカス光学系のレンズ構成図である。   FIG. 29 is a lens configuration diagram of the inner focus optical system according to Example 5 of the present invention.

図29のインナーフォーカス光学系のレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とから構成される。   The lenses of the inner focus optical system in FIG. 29 are, in order from the object side to the image side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 is composed of a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向け像側の面が非球面から成る負メニスカスレンズと両凸レンズと物体側に凹面を向けた正メニスカスレンズと両凹レンズと両凸レンズから成る3枚接合レンズで構成される。   The first lens group G1 includes a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side and an image-side surface made of an aspheric surface, and a biconvex lens And a positive meniscus lens having a concave surface facing the object side, and a three-piece cemented lens composed of a biconcave lens and a biconvex lens.

開口絞りSは第1レンズ群G1と第2レンズ群G2の間に配置されている。   The aperture stop S is disposed between the first lens group G1 and the second lens group G2.

第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズLaと両凸レンズLbと物体側に凹面を向けた負メニスカスレンズLcからなる3枚接合レンズと両凸レンズと像側の面が非球面から成る両凸レンズで構成される。   The second lens group G2 includes a three-lens cemented lens including a negative meniscus lens La and a biconvex lens Lb having a convex surface facing the object side, and a negative meniscus lens Lc having a concave surface facing the object side, and a biconvex lens and the image side surface being non-surface. It consists of a biconvex lens consisting of a spherical surface.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズで構成され、第3レンズ群G3を光軸に沿って像面側へ移動させることにより無限遠物体から近距離物体へのフォーカシングを行っている。   The third lens group G3 is composed of a negative meniscus lens having a convex surface directed toward the object side. The third lens group G3 is moved from the infinity object to the short distance object by moving the third lens group G3 along the optical axis toward the image plane side. It is carried out.

第4レンズ群G4は、両凸レンズで構成される。   The fourth lens group G4 is composed of a biconvex lens.

光学フィルターFLは第4レンズ群G4と像面Iとの間に配置されている。   The optical filter FL is disposed between the fourth lens group G4 and the image plane I.

続いて、以下に実施例5に係るインナーフォーカス光学系の諸元値を示す。
数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 92.7835 3.0140 1.51680 64.20
2 944.7431 0.2000
3 61.5507 1.5000 1.49700 81.61
4 12.6652 6.8120
5 46.9978 1.5000 1.59349 67.00
6* 11.7745 4.1858
7 46.1775 1.9567 1.90366 31.31
8 -365.5764 2.8857
9 -20.8072 4.0393 1.55032 75.50
10 -10.8701 0.8000 1.64769 33.84
11 40.6050 3.7101 1.84666 23.78
12 -24.3611 4.3990
13(開口絞り) ∞ 1.8197
14 48.8138 3.1111 1.80610 33.27
15 13.4037 9.7120 1.59349 67.00
16 -14.2433 0.8000 1.80610 33.27
17 -157.7796 0.1500
18 45.7722 4.7785 1.77250 49.62
19 -26.1471 0.1263
20 234.9351 2.4179 1.59349 67.00
21* -64.4738 (d21)
22 131.2250 0.8000 1.48749 70.44
23 17.6774 (d23)
24 56.0468 3.9772 1.43700 95.10
25 -29.5065 0.1500
26 ∞ 4.2000 1.51680 64.20
27 ∞ (BF)
像面 ∞
[非球面データ]
6面 21面
K 0.0000 0.0000
A4 -3.48384E-05 3.29882E-05
A6 -4.95711E-07 -4.94954E-08
A8 3.58410E-09 2.79280E-10
A10 -4.44666E-11 -7.30904E-13
[各種データ]
INF 40倍 0.2m
焦点距離 12.34 12.29 12.16
Fナンバー 1.47 1.47 1.47
全画角2ω 88.55 88.49 88.35
像高Y 10.82 10.82 10.82
レンズ全長 89.01 89.01 89.01
[可変間隔データ]
INF 40倍 0.2m
d0 ∞ 475.9851 110.9851
d21 2.0000 2.3357 3.3160
d23 5.2689 4.9332 3.9529
BF 14.7008 14.7008 14.7008
[レンズ群データ]
群 始面 焦点距離
G1 1 -62.04
G2 14 21.42
G3 22 -42.00
G4 24 44.87
Subsequently, specification values of the inner focus optical system according to Example 5 are shown below.
Numerical example 5
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 92.7835 3.0140 1.51680 64.20
2 944.7431 0.2000
3 61.5507 1.5000 1.49700 81.61
4 12.6652 6.8120
5 46.9978 1.5000 1.59349 67.00
6 * 11.7745 4.1858
7 46.1775 1.9567 1.90366 31.31
8 -365.5764 2.8857
9 -20.8072 4.0393 1.55032 75.50
10 -10.8701 0.8000 1.64769 33.84
11 40.6050 3.7101 1.84666 23.78
12 -24.3611 4.3990
13 (Aperture stop) ∞ 1.8197
14 48.8138 3.1111 1.80610 33.27
15 13.4037 9.7120 1.59349 67.00
16 -14.2433 0.8000 1.80610 33.27
17 -157.7796 0.1500
18 45.7722 4.7785 1.77250 49.62
19 -26.1471 0.1263
20 234.9351 2.4179 1.59349 67.00
21 * -64.4738 (d21)
22 131.2250 0.8000 1.48749 70.44
23 17.6774 (d23)
24 56.0468 3.9772 1.43700 95.10
25 -29.5065 0.1500
26 ∞ 4.2000 1.51680 64.20
27 ∞ (BF)
Image plane ∞
[Aspherical data]
6 faces 21 faces
K 0.0000 0.0000
A4 -3.48384E-05 3.29882E-05
A6 -4.95711E-07 -4.94954E-08
A8 3.58410E-09 2.79280E-10
A10 -4.44666E-11 -7.30904E-13
[Various data]
INF 40 times 0.2m
Focal length 12.34 12.29 12.16
F number 1.47 1.47 1.47
Full angle of view 2ω 88.55 88.49 88.35
Image height Y 10.82 10.82 10.82
Total lens length 89.01 89.01 89.01
[Variable interval data]
INF 40 times 0.2m
d0 ∞ 475.9851 110.9851
d21 2.0000 2.3357 3.3160
d23 5.2689 4.9332 3.9529
BF 14.7008 14.7008 14.7008
[Lens group data]
Group Start surface Focal length
G1 1 -62.04
G2 14 21.42
G3 22 -42.00
G4 24 44.87

図36は、本発明の実施例6のインナーフォーカス光学系のレンズ構成図である。   FIG. 36 is a lens configuration diagram of the inner focus optical system according to Example 6 of the present invention.

図36のインナーフォーカス光学系のレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とから構成される。   36, in order from the object side to the image side, the first lens group G1 having a negative refractive power, the second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 is composed of a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、両凸レンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向け両側の面が非球面から成る負メニスカスレンズと両凸レンズと物体側に凹面を向けた正メニスカスレンズと両凹レンズと両凸レンズから成る3枚接合レンズで構成される。   The first lens group G1 includes a biconvex lens, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and both surfaces made of aspheric surfaces, a biconvex lens, and a positive surface having a concave surface facing the object side. It is composed of a three-piece cemented lens composed of a meniscus lens, a biconcave lens, and a biconvex lens.

開口絞りSは第1レンズ群G1と第2レンズ群G2の間に配置されている。   The aperture stop S is disposed between the first lens group G1 and the second lens group G2.

第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズLaと両凸レンズLbと物体側に凹面を向けた負メニスカスレンズLcからなる3枚接合レンズと両凸レンズと物体側が凹面を向け両側の面が非球面から成る正メニスカスレンズで構成される。   The second lens group G2 includes a cemented triplet composed of a negative meniscus lens La having a convex surface facing the object side, a biconvex lens Lb, and a negative meniscus lens Lc having a concave surface facing the object side, a biconvex lens, and both sides facing the concave surface on the object side Is a positive meniscus lens having an aspheric surface.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズで構成され、第3レンズ群G3を光軸に沿って像面側へ移動させることにより無限遠物体から近距離物体へのフォーカシングを行っている。   The third lens group G3 is composed of a negative meniscus lens having a convex surface directed toward the object side. The third lens group G3 is moved from the infinity object to the short distance object by moving the third lens group G3 along the optical axis toward the image plane side. It is carried out.

第4レンズ群G4は、両凸レンズで構成される。   The fourth lens group G4 is composed of a biconvex lens.

光学フィルターFLは第4レンズ群G4と像面Iとの間に配置されている。   The optical filter FL is disposed between the fourth lens group G4 and the image plane I.

続いて、以下に実施例6に係るインナーフォーカス光学系の諸元値を示す。
数値実施例6
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 148.0172 2.3711 1.51680 64.20
2 -142366.9122 0.2000
3 65.4978 1.5000 1.49700 81.61
4 13.0033 6.7242
5* 45.5902 1.5000 1.59349 67.00
6* 12.1958 4.8171
7 48.5613 2.0527 1.90366 31.31
8 -260.8483 3.6912
9 -21.2467 3.3049 1.55032 75.50
10 -12.7614 0.8000 1.64769 33.84
11 35.9287 3.7451 1.84666 23.78
12 -28.2061 4.4220
13(開口絞り) ∞ 1.2399
14 40.2489 2.2389 1.80610 33.27
15 13.8101 10.0558 1.59349 67.00
16 -13.8912 0.8000 1.80610 33.27
17 -488.3151 0.1500
18 40.0072 4.9275 1.77250 49.62
19 -27.8584 0.1263
20* -2983.7281 2.4541 1.59349 67.00
21* -45.6636 (d21)
22 148.4414 0.8000 1.48749 70.44
23 17.3319 (d23)
24 50.7900 4.0570 1.43700 95.10
25 -30.7400 0.1500
26 ∞ 4.2000 1.51680 64.20
27 ∞ (BF)
像面 ∞
[非球面データ]
5面 6面 20面 21面
K 0.0000 0.0000 0.0000 0.0000
A4 -8.29511E-07 -4.30314E-05 -7.15980E-06 2.92706E-05
A6 1.32579E-07 -1.77753E-07 2.02067E-08 -1.14763E-08
A8 -9.99712E-10 -2.39719E-10 1.65705E-09 1.95036E-09
A10 3.83778E-12 -1.47642E-11 -7.40897E-12 -7.97317E-12
[各種データ]
INF 40倍 0.2m
焦点距離 12.46 12.42 12.28
Fナンバー 1.46 1.46 1.47
全画角2ω 88.37 88.27 87.98
像高Y 10.82 10.82 10.82
レンズ全長 89.02 89.02 89.02
[可変間隔データ]
INF 40倍 0.2m
d0 ∞ 482.9801 110.9801
d21 2.0000 2.3167 3.2633
d23 5.2288 4.9121 3.9656
BF 15.4632 15.4632 15.4631
[レンズ群データ]
群 始面 焦点距離
G1 1 -48.82
G2 14 21.29
G3 22 -40.33
G4 24 44.49
Subsequently, specification values of the inner focus optical system according to Example 6 are shown below.
Numerical example 6
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 148.0172 2.3711 1.51680 64.20
2 -142366.9122 0.2000
3 65.4978 1.5000 1.49700 81.61
4 13.0033 6.7242
5 * 45.5902 1.5000 1.59349 67.00
6 * 12.1958 4.8171
7 48.5613 2.0527 1.90366 31.31
8 -260.8483 3.6912
9 -21.2467 3.3049 1.55032 75.50
10 -12.7614 0.8000 1.64769 33.84
11 35.9287 3.7451 1.84666 23.78
12 -28.2061 4.4220
13 (Aperture stop) ∞ 1.2399
14 40.2489 2.2389 1.80610 33.27
15 13.8101 10.0558 1.59349 67.00
16 -13.8912 0.8000 1.80610 33.27
17 -488.3151 0.1500
18 40.0072 4.9275 1.77250 49.62
19 -27.8584 0.1263
20 * -2983.7281 2.4541 1.59349 67.00
21 * -45.6636 (d21)
22 148.4414 0.8000 1.48749 70.44
23 17.3319 (d23)
24 50.7900 4.0570 1.43700 95.10
25 -30.7400 0.1500
26 ∞ 4.2000 1.51680 64.20
27 ∞ (BF)
Image plane ∞
[Aspherical data]
5 faces 6 faces 20 faces 21 faces
K 0.0000 0.0000 0.0000 0.0000
A4 -8.29511E-07 -4.30314E-05 -7.15980E-06 2.92706E-05
A6 1.32579E-07 -1.77753E-07 2.02067E-08 -1.14763E-08
A8 -9.99712E-10 -2.39719E-10 1.65705E-09 1.95036E-09
A10 3.83778E-12 -1.47642E-11 -7.40897E-12 -7.97317E-12
[Various data]
INF 40 times 0.2m
Focal length 12.46 12.42 12.28
F number 1.46 1.46 1.47
Full angle of view 2ω 88.37 88.27 87.98
Image height Y 10.82 10.82 10.82
Total lens length 89.02 89.02 89.02
[Variable interval data]
INF 40 times 0.2m
d0 ∞ 482.9801 110.9801
d21 2.0000 2.3167 3.2633
d23 5.2288 4.9121 3.9656
BF 15.4632 15.4632 15.4631
[Lens group data]
Group Start surface Focal length
G1 1 -48.82
G2 14 21.29
G3 22 -40.33
G4 24 44.49

図43は、本発明の実施例7のインナーフォーカス光学系のレンズ構成図である。   FIG. 43 is a lens configuration diagram of the inner focus optical system according to Example 7 of the present invention.

図43のインナーフォーカス光学系のレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とから構成される。   43, in order from the object side to the image side, the first lens group G1 having a negative refractive power, the second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 is composed of a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、両凸レンズと物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向け両側の面が非球面から成る負メニスカスレンズと両凸レンズと物体側に凹面を向けた正メニスカスレンズと両凹レンズと両凸レンズから成る3枚接合レンズで構成される。   The first lens group G1 includes a biconvex lens, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and both surfaces made of aspheric surfaces, a biconvex lens, and a positive surface having a concave surface facing the object side. It is composed of a three-piece cemented lens composed of a meniscus lens, a biconcave lens, and a biconvex lens.

開口絞りSは第1レンズ群G1と第2レンズ群G2の間に配置されている。   The aperture stop S is disposed between the first lens group G1 and the second lens group G2.

第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズLaと両凸レンズLbと物体側に凹面を向けた負メニスカスレンズLcからなる3枚接合レンズと両凸レンズと物体側が凹面を向け両側の面が非球面から成る正メニスカスレンズで構成される。   The second lens group G2 includes a cemented triplet composed of a negative meniscus lens La having a convex surface facing the object side, a biconvex lens Lb, and a negative meniscus lens Lc having a concave surface facing the object side, a biconvex lens, and both sides facing the concave surface on the object side Is a positive meniscus lens having an aspheric surface.

第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズで構成され、第3レンズ群G3を光軸に沿って像面側へ移動させることにより無限遠物体から近距離物体へのフォーカシングを行っている。   The third lens group G3 is composed of a negative meniscus lens having a convex surface directed toward the object side. The third lens group G3 is moved from the infinity object to the short distance object by moving the third lens group G3 along the optical axis toward the image plane side. It is carried out.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズと両凸レンズから成る接合レンズで構成される。   The fourth lens group G4 includes a cemented lens including a negative meniscus lens having a convex surface directed toward the object side and a biconvex lens.

光学フィルターFLは第4レンズ群G4と像面Iとの間に配置されている。   The optical filter FL is disposed between the fourth lens group G4 and the image plane I.

続いて、以下に実施例7に係るインナーフォーカス光学系の諸元値を示す。
数値実施例7
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 214.0210 2.4795 1.51680 64.20
2 -459.3514 0.2000
3 57.7775 1.5000 1.49700 81.61
4 11.8460 5.1583
5* 24.7464 1.5000 1.59349 67.00
6* 11.7790 5.2477
7 246.2613 1.3749 1.90366 31.31
8 -138.8222 3.6238
9 -17.6844 3.9828 1.55032 75.50
10 -10.7668 0.8000 1.59270 35.45
11 36.7595 4.0829 1.84666 23.78
12 -28.0517 1.6945
13(開口絞り) ∞ 2.2258
14 39.5254 2.3574 1.80610 33.27
15 14.1896 11.1402 1.59349 67.00
16 -15.5283 0.8000 1.80610 33.27
17 -131.8122 0.1500
18 46.4965 5.1616 1.77250 49.62
19 -29.2158 0.1263
20* 549.1239 2.3942 1.59349 67.00
21* -58.2043 (d21)
22 209.7375 0.8000 1.48749 70.44
23 23.2521 (d23)
24 32.8717 0.8000 1.83481 42.72
25 16.6499 6.5071 1.43700 95.10
26 -29.8402 0.1500
27 ∞ 4.2000 1.51680 64.20
28 ∞ (BF)
像面 ∞
[非球面データ]
5面 6面 20面 21面
K 0.0000 0.0000 0.0000 0.0000
A4 3.04792E-05 7.94799E-06 1.20612E-05 4.69646E-05
A6 -1.49310E-07 -4.83730E-07 2.40482E-07 2.38747E-07
A8 1.12955E-09 3.15734E-09 -2.91096E-10 -2.27444E-10
A10 -2.41320E-12 -3.27600E-11 -8.66765E-13 -5.28665E-13
[各種データ]
INF 40倍 0.2m
焦点距離 12.39 12.33 12.17
Fナンバー 1.46 1.46 1.46
全画角2ω 88.34 88.40 88.61
像高Y 10.82 10.82 10.82
レンズ全長 89.02 89.02 89.02
[可変間隔データ]
INF 40倍 0.2m
d0 ∞ 480.9801 110.9801
d21 2.0000 2.3699 3.4830
d23 5.4429 5.0730 3.9598
BF 13.1199 13.1199 13.1200
[レンズ群データ]
群 始面 焦点距離
G1 1 -40.25
G2 14 21.10
G3 22 -53.72
G4 24 61.98
Subsequently, specification values of the inner focus optical system according to Example 7 are shown below.
Numerical example 7
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 214.0210 2.4795 1.51680 64.20
2 -459.3514 0.2000
3 57.7775 1.5000 1.49700 81.61
4 11.8460 5.1583
5 * 24.7464 1.5000 1.59349 67.00
6 * 11.7790 5.2477
7 246.2613 1.3749 1.90366 31.31
8 -138.8222 3.6238
9 -17.6844 3.9828 1.55032 75.50
10 -10.7668 0.8000 1.59270 35.45
11 36.7595 4.0829 1.84666 23.78
12 -28.0517 1.6945
13 (Aperture stop) ∞ 2.2258
14 39.5254 2.3574 1.80610 33.27
15 14.1896 11.1402 1.59349 67.00
16 -15.5283 0.8000 1.80610 33.27
17 -131.8122 0.1500
18 46.4965 5.1616 1.77250 49.62
19 -29.2158 0.1263
20 * 549.1239 2.3942 1.59349 67.00
21 * -58.2043 (d21)
22 209.7375 0.8000 1.48749 70.44
23 23.2521 (d23)
24 32.8717 0.8000 1.83481 42.72
25 16.6499 6.5071 1.43700 95.10
26 -29.8402 0.1500
27 ∞ 4.2000 1.51680 64.20
28 ∞ (BF)
Image plane ∞
[Aspherical data]
5 faces 6 faces 20 faces 21 faces
K 0.0000 0.0000 0.0000 0.0000
A4 3.04792E-05 7.94799E-06 1.20612E-05 4.69646E-05
A6 -1.49310E-07 -4.83730E-07 2.40482E-07 2.38747E-07
A8 1.12955E-09 3.15734E-09 -2.91096E-10 -2.27444E-10
A10 -2.41320E-12 -3.27600E-11 -8.66765E-13 -5.28665E-13
[Various data]
INF 40 times 0.2m
Focal length 12.39 12.33 12.17
F number 1.46 1.46 1.46
Full angle of view 2ω 88.34 88.40 88.61
Image height Y 10.82 10.82 10.82
Total lens length 89.02 89.02 89.02
[Variable interval data]
INF 40 times 0.2m
d0 ∞ 480.9801 110.9801
d21 2.0000 2.3699 3.4830
d23 5.4429 5.0730 3.9598
BF 13.1199 13.1199 13.1200
[Lens group data]
Group Start surface Focal length
G1 1 -40.25
G2 14 21.10
G3 22 -53.72
G4 24 61.98

[条件式対応値]
条件式/実施例 EX1 EX2 EX3 EX4 EX5 EX6 EX7

(1)-6.5<f1/f<-2.8 -3.91 -3.39 -3.59 -4.94 -5.03 -3.92 -3.25
(2)-5.6<f3/f<-3.0 -3.58 -4.09 -3.58 -3.39 -3.40 -3.24 -4.34
(3)-0.68<f2/f1<-0.24 -0.46 -0.49 -0.46 -0.34 -0.35 -0.44 -0.52
(4)0.5<FcEntp/f3<0.95 0.68 0.82 0.73 0.86 0.87 0.79 0.78
(5)FcEntp/f<-2.0 -2.43 -3.37 -2.63 -2.91 -2.97 -2.55 -3.37
(6)-0.15<f/fabc<0.06 -0.08 -0.02 0.03 -0.09 -0.10 -0.10 -0.02
(7)0.5<OALabc/f<1.5 0.66 0.92 0.89 0.96 1.10 1.05 1.15
(8)-1.3<M42×(1-M32)<-0.5 -0.72 -0.82 -0.93 -0.97 -0.93 -0.99 -0.84
[Values for conditional expressions]
Condition / Example EX1 EX2 EX3 EX4 EX5 EX6 EX7

(1) -6.5 <f1 / f <-2.8 -3.91 -3.39 -3.59 -4.94 -5.03 -3.92 -3.25
(2) -5.6 <f3 / f <-3.0 -3.58 -4.09 -3.58 -3.39 -3.40 -3.24 -4.34
(3) -0.68 <f2 / f1 <-0.24 -0.46 -0.49 -0.46 -0.34 -0.35 -0.44 -0.52
(4) 0.5 <FcEntp / f3 <0.95 0.68 0.82 0.73 0.86 0.87 0.79 0.78
(5) FcEntp / f <-2.0 -2.43 -3.37 -2.63 -2.91 -2.97 -2.55 -3.37
(6) -0.15 <f / fabc <0.06 -0.08 -0.02 0.03 -0.09 -0.10 -0.10 -0.02
(7) 0.5 <OALabc / f <1.5 0.66 0.92 0.89 0.96 1.10 1.05 1.15
(8) -1.3 <M4 2 × (1-M3 2 ) <-0.5 -0.72 -0.82 -0.93 -0.97 -0.93 -0.99 -0.84

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
La 3枚接合を構成する負レンズ
Lb 3枚接合を構成する正レンズ
Lc 3枚接合を構成する負レンズ
S 開口絞り
FL 光学フィルター
I 像面
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group La Negative lens Lb composing 3 lens cemented lenses Positive lens Lc composing 3 lens cemented lenses Negative lens S composing 3 lens cemented lenses Aperture stop FL Optical filter I Image plane

Claims (4)

物体側から像側へ順に、負の屈折力の第1レンズ群G1と、開口絞りと、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4とからなり、無限遠物体側から近距離物体側へのフォーカシングをする際、第3レンズ群G3が像面方向へ移動し、以下の条件を満足することを特徴とするインナーフォーカス光学系。
(1)−6.5<f1/f< −2.8
(2)−5.6<f3/f<−3.0
(3)−0.68<f2/f1<−0.24
ただし
f : 全系の無限遠合焦状態での焦点距離
f1 : 第1レンズ群G1の焦点距離
f2 : 第2レンズ群G2の焦点距離
f3 : 第3レンズ群G3の焦点距離
In order from the object side to the image side, the first lens group G1 having a negative refractive power, the aperture stop, the second lens group G2 having a positive refractive power, the third lens group G3 having a negative refractive power, and a positive lens The fourth lens group G4 having a refractive power is characterized in that the third lens group G3 moves in the image plane direction and satisfies the following conditions when focusing from the infinity object side to the near object side. Inner focus optical system.
(1) -6.5 <f1 / f <-2.8
(2) -5.6 <f3 / f <-3.0
(3) -0.68 <f2 / f1 <-0.24
Where f: focal length in the infinite focus state of the entire system f1: focal length of the first lens group G1 f2: focal length of the second lens group G2 f3: focal length of the third lens group G3
無限遠合焦時の、前記第3レンズ群G3の物体側の面を基準とし、前記第2レンズ群G2による前記開口絞りの結像位置をFcEntpとした時、以下の条件を満足することを特徴とする請求項1に記載のインナーフォーカス光学系。
(4)0.5<FcEntp/f3<0.95
(5)FcEntp/f<−2.0
When the object side surface of the third lens group G3 at the time of focusing on infinity is used as a reference, and the imaging position of the aperture stop by the second lens group G2 is FcEntp, the following conditions are satisfied: The inner focus optical system according to claim 1, wherein:
(4) 0.5 <FcEntp / f3 <0.95
(5) FcEntp / f <−2.0
前記開口絞りの像面側に、負の屈折力のレンズLa、正の屈折力のレンズLb、負の屈折力のレンズLcの3枚が接合された接合レンズを有し、前記レンズLa、Lb、Lcの接合レンズの焦点距離、合成厚が以下の条件を満足することを特徴とする請求項1または請求項2に記載のインナーフォーカス光学系。
(6)−0.15<f/fabc<0.06
(7)0.5<OALabc/f<1.5
ただし
fabc : La,Lb,Lcの接合レンズの焦点距離
OALabc : La,Lb,Lcの接合レンズの合成厚
A lens having a negative refractive power La, a positive refractive power lens Lb, and a negative refractive power lens Lc are cemented on the image plane side of the aperture stop, and the lenses La and Lb 3. The inner focus optical system according to claim 1, wherein a focal length and a composite thickness of the cemented lens of Lc and Lc satisfy the following conditions.
(6) -0.15 <f / fabc <0.06
(7) 0.5 <OALAbc / f <1.5
However, the focal length of the cemented lens of fabc: La, Lb, and Lc OALabc: the combined thickness of the cemented lens of La, Lb, and Lc
以下の条件を満足することを特徴とする請求項1乃至3のいずれかに記載のインナーフォーカス光学系。
(8)−1.3<M4×(1−M3)<−0.5
ただし、
M3:物体距離無限遠時の第3レンズ群の横倍率
M4:物体距離無限遠時の第4レンズ群の横倍率
The inner focus optical system according to claim 1, wherein the following condition is satisfied.
(8) -1.3 <M4 2 × (1-M3 2 ) <− 0.5
However,
M3: Lateral magnification of the third lens group when the object distance is infinity M4: Lateral magnification of the fourth lens group when the object distance is infinity
JP2015205778A 2015-10-19 2015-10-19 Inner focus optical system Pending JP2017078752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205778A JP2017078752A (en) 2015-10-19 2015-10-19 Inner focus optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205778A JP2017078752A (en) 2015-10-19 2015-10-19 Inner focus optical system

Publications (1)

Publication Number Publication Date
JP2017078752A true JP2017078752A (en) 2017-04-27

Family

ID=58666091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205778A Pending JP2017078752A (en) 2015-10-19 2015-10-19 Inner focus optical system

Country Status (1)

Country Link
JP (1) JP2017078752A (en)

Similar Documents

Publication Publication Date Title
US10215972B2 (en) Optical system and image pickup apparatus including the same
JP5173260B2 (en) Zoom lens and imaging apparatus having the same
US10095012B2 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
US8792181B2 (en) Zoom lens and image pickup apparatus including the same
US9715090B2 (en) Zoom lens and image pickup apparatus including the same
JP6314471B2 (en) Zoom lens system
CN107544129B (en) Zoom lens and imaging device
US20090185293A1 (en) Wide-angle lens, optical apparatus, and method for focusing
JP2011075975A (en) Zoom lens and imaging apparatus having the same
US10663703B2 (en) Zoom lens and image pickup apparatus
JP5767335B2 (en) Zoom lens and imaging device
JP6199230B2 (en) Super wide-angle zoom lens
JP6253379B2 (en) Optical system and imaging apparatus having the same
WO2013031180A1 (en) Zoom lens and imaging device
JP2011145566A (en) Zoom lens and optical apparatus having the same
JP2019074632A (en) Optical system and image capturing device having the same
JP2016050948A (en) Zoom lens and imaging apparatus
JP6390147B2 (en) Super wide-angle zoom lens
US20220244502A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP6276634B2 (en) Super wide-angle zoom lens
JP6565708B2 (en) Inner focus optical system
JP2017134104A (en) Zoom lens and imaging device having the same
JP6749631B2 (en) Large aperture wide angle zoom lens
WO2013031183A1 (en) Zoom lens and imaging device
JP2020129022A (en) Wide-angle lens system