Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Celebrating the anniversary of three key events in climate change science

Climate science celebrates three 40th anniversaries in 2019: the release of the Charney report, the publication of a key paper on anthropogenic signal detection, and the start of satellite temperature measurements. This confluence of scientific understanding and data led to the identification of human fingerprints in atmospheric temperature.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signal-to-noise ratios used for identifying a model-predicted anthropogenic fingerprint in 40 years of satellite measurements of annual-mean tropospheric temperature.

Data availability

All primary satellite and model temperature datasets used here are publicly available. Derived products (synthetic satellite temperatures calculated from model simulations) are provided at: https://pcmdi.llnl.gov/research/DandA/.

References

  1. Charney, J. G. et al. Carbon Dioxide and Climate: A Scientific Assessment (Climate Research Board, National Research Council, 1979).

  2. Mitchell, J. F. B. & Karoly, D. J. In Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 695–738 (Cambridge Univ. Press, 2001).

  3. Hegerl, G. C. et al. In Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 663–745 (Cambridge Univ. Press, 2007).

  4. Bindoff, N. L. et al. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (Cambridge Univ. Press, 2013).

  5. Mears, C. & Wentz, F. J. J. Clim. 30, 7695–7718 (2017).

    Article  Google Scholar 

  6. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. J. Geophys. Res. 117, D08101 (2012).

    Article  Google Scholar 

  7. Fyfe, J. C. et al. Nat. Commun. 8, 14996 (2017).

    Article  CAS  Google Scholar 

  8. Santer, B. D. et al. Proc. Natl Acad. Sci. USA 110, 17235–17240 (2013).

    Article  CAS  Google Scholar 

  9. Knutti, R., Rugenstein, M. A. A. & Hegerl, G. C. Nat. Geosci. 10, 727–736 (2017).

    Article  CAS  Google Scholar 

  10. IPCC In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 17 (Cambridge Univ. Press, 2013).

  11. Ceppi, P., Brient, F., Zelinka, M. D. & Hartmann, D. L. WIREs Clim. Change 8, e465 (2017).

    Article  Google Scholar 

  12. Caldwell, P. M., Zelinka, M. D., Taylor, K. E. & Marvel, K. J. Clim. 29, 513–524 (2016).

    Article  Google Scholar 

  13. Klein, S. A., Hall, A., Norris, J. R. & Pincus, R. Surv. Geophys. 38, 1307–1329 (2017).

    Article  Google Scholar 

  14. Klein, S. A. et al. J. Geophys. Res. 118, 1329–1342 (2013).

    Google Scholar 

  15. Zelinka, M. D., Randall, D. A., Webb, M. J. & Klein, S. A. Nat. Clim. Change 7, 674–678 (2017).

    Article  Google Scholar 

  16. Barnett, T. P. et al. Science 309, 284–287 (2005).

    Article  CAS  Google Scholar 

  17. Hasselmann, K. Meteorology over the Tropical Oceans 251–259 (Royal Meteorological Society, London, 1979).

    Google Scholar 

  18. Chervin, R. M., Washington, W. M. & Schneider, S. H. J. Atmos. Sci. 33, 413–423 (1976).

    Article  Google Scholar 

  19. North, G. R., Kim, K. Y., Shen, S. S. P. & Hardin, J. W. J. Clim. 8, 401–408 (1995).

    Article  Google Scholar 

  20. Karl, T. R., Hassol, S. J., Miller, C. D. & Murray, W. L. (eds) Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences (US Climate Change Science Program, Subcommittee on Global Change Research, 2006).

  21. Manabe, S. & Wetherald, R. T. J. Atmos. Sci. 24, 241–259 (1967).

    Article  CAS  Google Scholar 

  22. Zou, C.-Z. & Qian, H. J. Atmos. Ocean. Tech. 33, 1967–1984 (2016).

    Article  Google Scholar 

  23. Solomon, S. et al. J. Geophys. Res. 122, 8940–8950 (2017).

    Article  CAS  Google Scholar 

  24. Fu, Q., Johanson, C. M., Warren, S. G. & Seidel, D. J. Nature 429, 55–58 (2004).

    Article  CAS  Google Scholar 

  25. Santer, B. D. et al. Sci. Rep. 7, 2336 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison (PCMDI) provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The authors thank S. Solomon (MIT) and K. Denman, N. McFarlane and K. von Salzen (Canadian Centre for Climate Modelling and Analysis) for helpful comments. Work at LLNL was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 through the Regional and Global Model Analysis Program (B.D.S., J.F.P., and M.Z.), the Laboratory Directed Research and Development Program under Project 18-ERD-054 (S.P.-C.), and the Early Career Research Program Award SCW1295 (C.B.). Support was also provided by NASA Grant NNH12CF05C (F.J.W. and C.M.), NOAA Grant NA18OAR4310423 (Q.F), and by NOAA’s Climate Program Office, Climate Monitoring Program, and NOAA’s Joint Polar Satellite System Program Office, Proving Ground and Risk Reduction Program (C.-Z.Z.). G.H. was supported by the European Research Council TITAN project (EC-320691) and by the Wolfson Foundation and the Royal Society as a Royal Society Wolfson Research Merit Award holder (WM130060). The views, opinions and findings contained in this report are those of the authors and should not be construed as a position, policy, or decision of the US Government, the US Department of Energy, or the National Oceanic and Atmospheric Administration.

Author information

Authors and Affiliations

Authors

Contributions

B.D.S. conceived the study and performed statistical analyses. J.F.P. calculated synthetic satellite temperatures from model simulation output. C.M., F.J.W., and C.-Z.Z. provided satellite temperature data. All authors contributed to the writing and revision of the manuscript.

Corresponding author

Correspondence to Benjamin D. Santer.

Supplementary Information

Supplementary Information

Supplementary Methods and Supplementary Tables S1-S3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santer, B.D., Bonfils, C.J.W., Fu, Q. et al. Celebrating the anniversary of three key events in climate change science. Nat. Clim. Chang. 9, 180–182 (2019). https://doi.org/10.1038/s41558-019-0424-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-019-0424-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing